3,699 research outputs found

    Temporal similarity metrics for latent network reconstruction: The role of time-lag decay

    Full text link
    When investigating the spreading of a piece of information or the diffusion of an innovation, we often lack information on the underlying propagation network. Reconstructing the hidden propagation paths based on the observed diffusion process is a challenging problem which has recently attracted attention from diverse research fields. To address this reconstruction problem, based on static similarity metrics commonly used in the link prediction literature, we introduce new node-node temporal similarity metrics. The new metrics take as input the time-series of multiple independent spreading processes, based on the hypothesis that two nodes are more likely to be connected if they were often infected at similar points in time. This hypothesis is implemented by introducing a time-lag function which penalizes distant infection times. We find that the choice of this time-lag strongly affects the metrics' reconstruction accuracy, depending on the network's clustering coefficient and we provide an extensive comparative analysis of static and temporal similarity metrics for network reconstruction. Our findings shed new light on the notion of similarity between pairs of nodes in complex networks

    Like-sign Di-lepton Signals in Higgsless Models at the LHC

    Full text link
    We study the potential LHC discovery of the Z1 KK gauge boson unitarizing longitudinal W+W- scattering amplitude. In particular, we explore the decay mode Z1->t tbar along with Z1-> W+W- without specifying the branching fractions. We propose to exploit the associated production pp-> W Z1, and select the final state of like-sign dileptons plus multijets and large missing energy. We conclude that it is possible to observe the Z1 resonance at a 5 sigma level with an integrated luminosity of 100 inverse fb at the LHC upto 650 GeV for a dominant WW channel, and 560 GeV for a dominant ttbar channel.Comment: 13 pages, 7 figure

    Primary tumors of the patella

    Get PDF

    Effect of Doping on the phase stability and Superconductivity in LaH10

    Full text link
    We present a computational investigation into the effects of chemical doping with 15 different elements on phase stability and superconductivity in the LaH10 structure. Most doping elements were found to induce softening of phonon modes, enhancing electron-phonon coupling and improving critical superconducting temperature while weakening dynamical stability. Unlike these dopants, Ce was found to extend the range of dynamical stability for LaH10 by eliminating the van Hove singularity near the Fermi level. The doped compound, La0.75Ce0.25H10, maintains high-temperature superconductivity. We also demonstrate that different Ce doping configurations in the LaH10 structure have a minimal effect on energetic stability and electron-phonon coupling strength. Our findings suggest that Ce is a promising dopant to stabilize LaH10 at lower pressures while preserving its high-temperature superconductivity
    corecore