1,499 research outputs found

    Controllability Analysis and Degraded Control for a Class of Hexacopters Subject to Rotor Failures

    Full text link
    This paper considers the controllability analysis and fault tolerant control problem for a class of hexacopters. It is shown that the considered hexacopter is uncontrollable when one rotor fails, even though the hexacopter is over-actuated and its controllability matrix is row full rank. According to this, a fault tolerant control strategy is proposed to control a degraded system, where the yaw states of the considered hexacopter are ignored. Theoretical analysis indicates that the degraded system is controllable if and only if the maximum lift of each rotor is greater than a certain value. The simulation and experiment results on a prototype hexacopter show the feasibility of our controllability analysis and degraded control strategy.Comment: 21 pages, 7 figures, submitted to Journal of Intelligent & Robotic System

    Robust Dynamic Selection of Tested Modules in Software Testing for Maximizing Delivered Reliability

    Full text link
    Software testing is aimed to improve the delivered reliability of the users. Delivered reliability is the reliability of using the software after it is delivered to the users. Usually the software consists of many modules. Thus, the delivered reliability is dependent on the operational profile which specifies how the users will use these modules as well as the defect number remaining in each module. Therefore, a good testing policy should take the operational profile into account and dynamically select tested modules according to the current state of the software during the testing process. This paper discusses how to dynamically select tested modules in order to maximize delivered reliability by formulating the selection problem as a dynamic programming problem. As the testing process is performed only once, risk must be considered during the testing process, which is described by the tester's utility function in this paper. Besides, since usually the tester has no accurate estimate of the operational profile, by employing robust optimization technique, we analysis the selection problem in the worst case, given the uncertainty set of operational profile. By numerical examples, we show the necessity of maximizing delivered reliability directly and using robust optimization technique when the tester has no clear idea of the operational profile. Moreover, it is shown that the risk averse behavior of the tester has a major influence on the delivered reliability.Comment: 19 pages, 4 figure
    • …
    corecore