3,556 research outputs found

    Like-sign Di-lepton Signals in Higgsless Models at the LHC

    Full text link
    We study the potential LHC discovery of the Z1 KK gauge boson unitarizing longitudinal W+W- scattering amplitude. In particular, we explore the decay mode Z1->t tbar along with Z1-> W+W- without specifying the branching fractions. We propose to exploit the associated production pp-> W Z1, and select the final state of like-sign dileptons plus multijets and large missing energy. We conclude that it is possible to observe the Z1 resonance at a 5 sigma level with an integrated luminosity of 100 inverse fb at the LHC upto 650 GeV for a dominant WW channel, and 560 GeV for a dominant ttbar channel.Comment: 13 pages, 7 figure

    Phase structure of lattice QCD with two flavors of Wilson quarks at finite temperature and chemical potential

    Full text link
    We present results for phase structure of lattice QCD with two degenerate flavors (Nf=2N_f=2) of Wilson quarks at finite temperature TT and small baryon chemical potential μB\mu_B. Using the imaginary chemical potential for which the fermion determinant is positive, we perform simulations at points where the ratios of pseudo-scalar meson mass to the vector meson mass mπ/mρm_\pi/m_\rho are between 0.943(3)0.943(3) and 0.899(4)0.899(4) as well as in the quenched limit. By analytic continuation to real quark chemical potential μ\mu, we obtain the transition temperature as a function of small μB\mu_B. We attempt to determine the nature of transition at imaginary chemical potential by histogram, MC history, and finite size scaling. In the infinite heavy quark limit, the transition is of first order. At intermediate values of quark mass mqm_q corresponding to the ratio of mπ/mρm_\pi/m_\rho in the range from 0.943(3)0.943(3) to 0.899(4)0.899(4) at aμI=0.24a\mu_I=0.24, the MC simulations show absence of phase transition.Comment: 10 pages, 17 figures;16 figures;9 pages,10 figures;10 pages,11 figure

    UCMCTrack: Multi-Object Tracking with Uniform Camera Motion Compensation

    Full text link
    Multi-object tracking (MOT) in video sequences remains a challenging task, especially in scenarios with significant camera movements. This is because targets can drift considerably on the image plane, leading to erroneous tracking outcomes. Addressing such challenges typically requires supplementary appearance cues or Camera Motion Compensation (CMC). While these strategies are effective, they also introduce a considerable computational burden, posing challenges for real-time MOT. In response to this, we introduce UCMCTrack, a novel motion model-based tracker robust to camera movements. Unlike conventional CMC that computes compensation parameters frame-by-frame, UCMCTrack consistently applies the same compensation parameters throughout a video sequence. It employs a Kalman filter on the ground plane and introduces the Mapped Mahalanobis Distance (MMD) as an alternative to the traditional Intersection over Union (IoU) distance measure. By leveraging projected probability distributions on the ground plane, our approach efficiently captures motion patterns and adeptly manages uncertainties introduced by homography projections. Remarkably, UCMCTrack, relying solely on motion cues, achieves state-of-the-art performance across a variety of challenging datasets, including MOT17, MOT20, DanceTrack and KITTI. More details and code are available at https://github.com/corfyi/UCMCTrackComment: Accepted to AAAI 202

    Integrating microfluidics and biosensing on a single flexible acoustic device using hybrid modes

    Get PDF
    Integration of microfluidics and biosensing functionalities on a single device holds promise in continuous health monitoring and disease diagnosis for point-of-care applications. However, the required functions of fluid handling and biomolecular sensing usually arise from different actuation mechanisms. In this work, we demonstrate that a single acoustofluidic device, based on a flexible thin film platform, is able to generate hybrid waves modes, which can be used for fluidic actuation (Lamb waves) and biosensing (thickness shear waves). On this integrated platform, we show multiple and sequential functions of mixing, transport and disposal of liquid volumes using Lamb waves, whilst the thickness bulk shear waves allow us to sense the chemotherapeutic Imatinib, using an aptamer-based strategy, as would be required for therapy monitoring. Upon binding, the conformation of the aptamer results in a change in coupled mass, which has been detected. This platform architecture has the potential to generate a wide range of simple sample-to-answer biosensing acoustofluidic devices

    Higher-order Topological Phases of Magnons in van der Waals Honeycomb Ferromagnets

    Full text link
    We theoretically propose a second-order topological magnon insulator by stacking the van der Waals honeycomb ferromagnets with antiferromagnetic interlayer coupling. The system exhibits Z2_{2} topological phase, protected by pseudo-time-reversal symmetry (PTRS). An easy-plane anisotropy term breaks PTRS and destroys the topological phase. Nevertheless, it respects a magnetic two-fold rotational symmetry which protects a second-order topological phase with corner modes in bilayer and hinge modes along stacking direction. Moreover, an introduced staggered interlayer coupling establishes a Z2_{2}×\timesZ topology, giving rise to gapped topological surface modes carrying non-zero Chern numbers. Consequently, chiral hinge modes propagate along the horizontal hinges in a cuboid geometry and are robust against disorders. Our work bridges the higher-order topology and magnons in van der Waals platforms, and could be used for constructing topological magnonic devices
    corecore