1,669 research outputs found
Comparison of collapse-resistance capacities of RC frames with and without viscous dampers
In modern seismic design, damping devices are often used to dissipate seismic energy and therefore enable a control of the structural response to earthquake ground excitation. As a result, the member section sizes or the amount of reinforcement in a structure with dampers may be reduced from those without dampers. Although both designs may be made as equivalent in terms of their performances under design earthquakes, their capacities in resisting collapse under the worst credible earthquake scenarios could be different, and there is little information from the literature that addresses this concern. In this paper, the collapse-resistance capacities of RC frames designed for different seismic hazard levels with and without dampers are calculated through a collapse fragility analysis using an incremental dynamic analysis approach, and the results are compared. On this basis, a proposal is put forward for the purpose to enhance the collapse-resistance capacities of structures with dampers in high seismic hazard levels. The effectiveness of the proposed enhancement is demonstrated
A UAV-Aided Real-Time Channel Sounder for Highly Dynamic Nonstationary A2G Scenarios
With the rapid development and broad applications of unmanned aerial vehicle (UAV)-based wireless stations in the sky, fundamental understanding and characterization of the realistic air-to-ground (A2G) communication link properties are crucial. In this article, a UAV-aided channel sounder with a real-time processing hardware system is developed for highly dynamic and nonstationary A2G channel measurements. In the hardware system, a global positioning system (GPS)-based triggering signal is designed, the equivalent antenna pattern affected by the UAV airframe is considered, and an appropriate sounding signal is selected, to improve the accuracy of measured channel impulse response (CIR). Moreover, real-time hardware processing algorithms for raw channel data, that is, CIR extraction, system response elimination (SRE), power loss recovery (PLR), and adaptive multipath component (MPC) recognition are developed and implemented on a single field-programmable gate array (FPGA) chip. In this way, the required storage size of channel data and the processing time for one slice of CIR is greatly decreased, which can meet the requirement of nonstationary A2G channel measurement with a high sampling rate and long-time measurement. A commercial channel emulator is used to reproduce controllable channels and verify the performance of the developed channel sounder. Finally, the developed channel sounder is applied to carry out A2G measurement campaigns at 3.5 GHz in a campus scenario. The channel characteristics, that is, path loss (PL), K -factor, and path angle are analyzed. The measured channel characteristics are consistent with existing measurements under a similar scenario. The estimated path angles are also validated by the theoretical results. Thus, the channel sounder can be used to capture the nonstationary A2G channel characteristics for the system design and algorithm optimization of A2G communications.</p
Microstructure and arc erosion behavior of WC/CuCr30 composites based on nano-Cr precipitation
CuCr alloys with high contact performance for medium and high voltage vacuum circuit breakers are becoming
increasingly urgent. In this work, WC/CuCr30 composites were prepared by SPS process, and nanometer-sized precipitated Cr phases were obtained by subsequent heat treatment. The microstructure and arc erosion behavior were investigated. The results show that nano-Cr phase precipitated in copper matrix can effectively improve the interfacial bonding strength between the Cu matrix and WC particles, and part of the precipitated nano-Cr phase is combined with the C element in WC to form nano-Cr23C6. Both nanophases can improve the resistance to dislocation and sub-grain boundary movement in the deformation process of WC/CuCr30 composite, thus improving the hardness of the copper matrix with a slight decrease in electrical conductivity. The results of electrical contact show that the addition of WC particles and nano-Cr precipitates can not only extend contact life of CuCr material, but also help to disperse the arc to avoid concentrated erosion. The presence of Cr23C6 phase around WC particles effectively improves the interfacial bonding between Cu phase and WC phase and reduces the probability of pore existence at the interface, which is beneficial to vacuum breaking performance
Approaching Disorder-Tolerant Semiconducting Polymers
Doping has been widely used to control the charge carrier concentration in organic semiconductors. However, in conjugated polymers, n-doping is often limited by the tradeoff between doping efficiency and charge carrier mobilities, since dopants often randomly distribute within polymers, leading to significant structural and energetic disorder. Here, we screen a large number of polymer building block combinations and explore the possibility of designing n-type conjugated polymers with good tolerance to dopant-induced disorder. We show that a carefully designed conjugated polymer with a single dominant planar backbone conformation, high torsional barrier at each dihedral angle, and zigzag backbone curvature is highly dopable and can tolerate dopant-induced disorder. With these features, the designed diketopyrrolopyrrole (DPP)-based polymer can be efficiently n-doped and exhibit high n-type electrical conductivities over 120 S cm−1, much higher than the reference polymers with similar chemical structures. This work provides a polymer design concept for highly dopable and highly conductive polymeric semiconductors
Irradiation- Induced Extremes Create Hierarchical Face- /Body- Centered- Cubic Phases in Nanostructured High Entropy Alloys
A nanoscale hierarchical dual- phase structure is reported to form in a nanocrystalline NiFeCoCrCu high- entropy- alloy (HEA) film via ion irradiation. Under the extreme energy deposition and consequent thermal energy dissipation induced by energetic particles, a fundamentally new phenomenon is revealed, in which the original single- phase face- centered- cubic (FCC) structure partially transforms into alternating nanometer layers of a body- centered- cubic (BCC) structure. The orientation relationship follows the Nishiyama- Wasser- man relationship, that is, (011)BCC || (- 1¯1¯1)FCC and [100]BCC || [- 11¯0]FCC. Simulation results indicate that Cr, as a BCC stabilizing element, exhibits a tendency to segregate to the stacking faults (SFs). Furthermore, the high densities of SFs and twin boundaries in each nanocrystalline grain serve to accelerate the nucleation and growth of the BCC phase during irradiation. By adjusting the irradiation parameters, desired thicknesses of the FCC and BCC phases in the laminates can be achieved. This work demonstrates the controlled formation of an attractive dual- phase nanolaminate structure under ion irradiation and provides a strategy for designing new derivate structures of HEAs.A nanoscale hierarchical dual- phase structure is reported to form in a nanocrystalline NiFeCoCrCu high- entropy- alloy film via ion- irradiation- induced face- centered- cubic to body- centered- cubic phase transformation. Both kinetic and thermodynamic conditions for the phase transformation are explored. The results provide a new strategy for tailoring material structures on the nanometer or sub- nanometer scales.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/162803/3/adma202002652_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162803/2/adma202002652.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162803/1/adma202002652-sup-0001-SuppMat.pd
A Signature-Based Classification of Gastric Cancer That Stratifies Tumor Immunity and Predicts Responses to PD-1 Inhibitors
Gastric cancer is a leading cause of cancer-related deaths with considerable heterogeneity among patients. Appropriate classifications are essential for prognosis prediction and individualized treatment. Although immunotherapy showed potential efficacy in a portion of patients with gastric cancer, few studies have tried to classify gastric cancer specifically based on immune signatures. In this study, we established a 3-subtype cluster with low (CLIM), medium (CMIM), and high (CHIM) enrichment of immune signatures based on immunogenomic profiling. We validated the classification in multiple independent datasets. The CHIM subtype exhibited a relatively better prognosis and showed features of “hot tumors”, including low tumor purity, high stromal components, overexpression of immune checkpoint molecules, and enriched tumor-infiltrated immune cells (activated T cells and macrophages). In addition, CHIM tumors were also characterized by frequent ARID1A mutation, rare TP53 mutation, hypermethylation status, and altered protein expression (HER2, β-catenin, Cyclin E1, PREX1, LCK, PD-L1, Transglutaminase, and cleaved Caspase 7). By Gene Set Variation Analysis, “TGFβ signaling pathway” and “GAP junction” were enriched in CLIM tumors and inversely correlated with CD8+ and CD4+ T cell infiltration. Of note, the CHIM patients showed a higher response rate to immunotherapy (44.4% vs. 11.1% and 16.7%) and a more prolonged progression-free survival (4.83 vs. 1.86 and 2.75 months) than CMIM and CLIM patients in a microsatellite-independent manner. In conclusion, the new immune signature-based subtypes have potential therapeutic and prognostic implications for gastric cancer management, especially immunotherapy
Decoding the spermatogonial stem cell niche under physiological and recovery conditions in adult mice and humans
The intricate interaction between spermatogonial stem cell (SSC) and testicular niche is essential for maintaining SSC homeostasis; however, this interaction remains largely uncharacterized. In this study, to characterize the underlying signaling pathways and related paracrine factors, we delineated the intercellular interactions between SSC and niche cell in both adult mice and humans under physiological conditions and dissected the niche-derived regulation of SSC maintenance under recovery conditions, thus uncovering the essential role of C-C motif chemokine ligand 24 and insulin-like growth factor binding protein 7 in SSC maintenance. We also established the clinical relevance of specific paracrine factors in human fertility. Collectively, our work on decoding the adult SSC niche serves as a valuable reference for future studies on the aetiology, diagnosis, and treatment of male infertility.</p
RING finger 138 deregulation distorts NF-кB signaling and facilities colitis switch to aggressive malignancy
Prolonged activation of nuclear factor (NF)-кB signaling significantly contributes to the development of colorectal cancer (CRC). New therapeutic opportunities are emerging from targeting this distorted cell signaling transduction. Here, we discovered the critical role of RING finger 138 (RNF138) in CRC tumorigenesis through regulating the NF-кB signaling, which is independent of its Ubiquitin-E3 ligase activity involved in DNA damage response. RNF138(−/−) mice were hyper-susceptible to the switch from colitis to aggressive malignancy, which coincided with sustained aberrant NF-кB signaling in the colonic cells. Furthermore, RNF138 suppresses the activation of NF-кB signaling pathway through preventing the translocation of NIK and IKK-Beta Binding Protein (NIBP) to the cytoplasm, which requires the ubiquitin interaction motif (UIM) domain. More importantly, we uncovered a significant correlation between poor prognosis and the downregulation of RNF138 associated with reinforced NF-кB signaling in clinical settings, raising the possibility of RNF138 dysregulation as an indicator for the therapeutic intervention targeting NF-кB signaling. Using the xenograft models built upon either RNF138-dificient CRC cells or the cells derived from the RNF138-dysregulated CRC patients, we demonstrated that the inhibition of NF-кB signaling effectively hampered tumor growth. Overall, our work defined the pathogenic role of aberrant NF-кB signaling due to RNF138 downregulation in the cascade events from the colitis switch to colonic neoplastic transformation and progression, and also highlights the possibility of targeting the NF-кB signaling in treating specific subtypes of CRC indicated by RNF138-ablation
A heterozygous moth genome provides insights into herbivory and detoxification
How an insect evolves to become a successful herbivore is of profound biological and practical importance. Herbivores are often adapted to feed on a specific group of evolutionarily and biochemically related host plants1, but the genetic and molecular bases for adaptation to plant defense compounds remain poorly understood2. We report the first whole-genome sequence of a basal lepidopteran species, Plutella xylostella, which contains 18,071 protein-coding and 1,412 unique genes with an expansion of gene families associated with perception and the detoxification of plant defense compounds. A recent expansion of retrotransposons near detoxification-related genes and a wider system used in the metabolism of plant defense compounds are shown to also be involved in the development of insecticide resistance. This work shows the genetic and molecular bases for the evolutionary success of this worldwide herbivore and offers wider insights into insect adaptation to plant feeding, as well as opening avenues for more sustainable pest management.Minsheng You … Simon W Baxter … et al
Robust estimation of bacterial cell count from optical density
Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
- …