4,334 research outputs found
Resonant Tunneling through double-bended Graphene Nanoribbons
We investigate theoretically resonant tunneling through double-bended
graphene nanoribbon structures, i.e., armchair-edged graphene nanoribbons
(AGNRs) in between two semi-infinite zigzag graphene nanoribbon (ZGNR) leads.
Our numerical results demonstrate that the resonant tunneling can be tuned
dramatically by the Fermi energy and the length and/or widths of the AGNR for
both the metallic and semiconductor-like AGNRs. The structure can also be use
to control the valley polarization of the tunneling currents and could be
useful for potential application in valleytronics devices.Comment: 4 pages, 4 figure
Resonant Tunneling through S- and U-shaped Graphene Nanoribbons
We theoretically investigate resonant tunneling through S- and U-shaped
nanostructured graphene nanoribbons. A rich structure of resonant tunneling
peaks are found eminating from different quasi-bound states in the middle
region. The tunneling current can be turned on and off by varying the Fermi
energy. Tunability of resonant tunneling is realized by changing the width of
the left and/or right leads and without the use of any external gates.Comment: 6 pages, 7 figure
Improved three-dimensional color-gradient lattice Boltzmann model for immiscible multiphase flows
In this paper, an improved three-dimensional color-gradient lattice Boltzmann
(LB) model is proposed for simulating immiscible multiphase flows. Compared
with the previous three-dimensional color-gradient LB models, which suffer from
the lack of Galilean invariance and considerable numerical errors in many cases
owing to the error terms in the recovered macroscopic equations, the present
model eliminates the error terms and therefore improves the numerical accuracy
and enhances the Galilean invariance. To validate the proposed model, numerical
simulation are performed. First, the test of a moving droplet in a uniform flow
field is employed to verify the Galilean invariance of the improved model.
Subsequently, numerical simulations are carried out for the layered two-phase
flow and three-dimensional Rayleigh-Taylor instability. It is shown that, using
the improved model, the numerical accuracy can be significantly improved in
comparison with the color-gradient LB model without the improvements. Finally,
the capability of the improved color-gradient LB model for simulating dynamic
multiphase flows at a relatively large density ratio is demonstrated via the
simulation of droplet impact on a solid surface.Comment: 9 Figure
Tuning of energy levels and optical properties of graphene quantum dots
We investigate theoretically the magnetic levels and optical properties of
zigzag- and armchair-edged hexagonal graphene quantum dots (GQDs) utilizing the
tight-binding method. A new bound edge state at zero energy appears for the
zigzag GQDs in the absence of a magnetic field. The magnetic levels of GQDs
exhibit a Hofstadter-butterfly spectrum and approach the Landau levels of
two-dimensional graphene as the magnetic field increases. The optical
properties are tuned by the size, the type of the edge, and the external
magnetic field.Comment: 5 pages, 7 figures. to appear in Phys. Rev.
- …