8,187 research outputs found

    The verification of the Taylor-expansion moment method in solving aerosol breakage

    Get PDF
    The combination of the method of moment, characterizing the particle population balance, and the computational fluid dynamics has been an emerging research issue in the studies on the aerosol science and on the multiphase flow science. The difficulty of solving the moment equation arises mainly from the closure of some fractal moment variables which appears in the transform from the non-linear integral-differential population balance equation to the moment equations. Within the Taylor-expansion moment method, the breakage-dominated Taylor-expansion moment equation is first derived here when the symmetric fragmentation mechanism is involved. Due to the high efficiency and the high precision, this proposed moment model is expected to become an important tool for solving population balance equations

    QCD radiative correction to color-octet J/ψJ/\psi inclusive production at B Factories

    Full text link
    In nonrelativistic Quantum Chromodynamics (NRQCD), we study the next-to-leading order (NLO) QCD radiative correction to the color-octet J/ψJ/\psi inclusive production at B Factories. Compared with the leading-order (LO) result, the NLO QCD corrections are found to enhance the short-distance coefficients in the color-octet J/ψJ/\psi production e+eβˆ’β†’ccΛ‰(3P0(8)or3P0(8))g e^+ e^-\to c \bar c (^3P_0^{(8)} {\rm or} ^3P_0^{(8)})g by a factor of about 1.9. Moreover, the peak at the endpoint in the J/ψJ/\psi energy distribution predicted at LO can be smeared by the NLO corrections, but the major color-octet contribution still comes from the large energy region of J/ψJ/\psi. By fitting the latest data of Οƒ(e+eβˆ’β†’J/ψ+Xnonβˆ’ccΛ‰)\sigma(e^{+}e^{-}\to J/\psi+X_{\mathrm{non-c\bar{c}}}) observed by Belle, we find that the values of color-octet matrix elements are much smaller than expected earlier by using the naive velocity scaling rules or extracted from fitting experimental data with LO calculations. As the most stringent constraint by setting the color-singlet contribution to be zero in e+eβˆ’β†’J/ψ+Xnonβˆ’ccΛ‰e^{+}e^{-}\to J/\psi+X_{\mathrm{non-c\bar{c}}}, we get an upper limit of the color-octet matrix element, +4.0<0∣OJ/ψ[3P0(8)]∣0>/mc2<(2.0Β±0.6)Γ—10βˆ’2GeV3 + 4.0 <0| {\cal O}^{J/\psi} [{}^3P_0^{(8)}]|0>/m_c^2 <(2.0 \pm 0.6)\times 10^{-2} {\rm GeV}^3 at NLO in Ξ±s\alpha_s.Comment: 18 pages, 8 figure
    • …
    corecore