9,746 research outputs found

    Numerical Methods for Quasicrystals

    Full text link
    Quasicrystals are one kind of space-filling structures. The traditional crystalline approximant method utilizes periodic structures to approximate quasicrystals. The errors of this approach come from two parts: the numerical discretization, and the approximate error of Simultaneous Diophantine Approximation which also determines the size of the domain necessary for accurate solution. As the approximate error decreases, the computational complexity grows rapidly, and moreover, the approximate error always exits unless the computational region is the full space. In this work we focus on the development of numerical method to compute quasicrystals with high accuracy. With the help of higher-dimensional reciprocal space, a new projection method is developed to compute quasicrystals. The approach enables us to calculate quasicrystals rather than crystalline approximants. Compared with the crystalline approximant method, the projection method overcomes the restrictions of the Simultaneous Diophantine Approximation, and can also use periodic boundary conditions conveniently. Meanwhile, the proposed method efficiently reduces the computational complexity through implementing in a unit cell and using pseudospectral method. For illustrative purpose we work with the Lifshitz-Petrich model, though our present algorithm will apply to more general systems including quasicrystals. We find that the projection method can maintain the rotational symmetry accurately. More significantly, the algorithm can calculate the free energy density to high precision.Comment: 27 pages, 8 figures, 6 table

    Stability of Soft Quasicrystals in a Coupled-Mode Swift-Hohenberg Model for Three-Component Systems

    Full text link
    In this article, we discuss the stability of soft quasicrystalline phases in a coupled-mode Swift-Hohenberg model for three-component systems, where the characteristic length scales are governed by the positive-definite gradient terms. Classic two-mode approximation method and direct numerical minimization are applied to the model. In the latter approach, we apply the projection method to deal with the potentially quasiperiodic ground states. A variable cell method of optimizing the shape and size of higher-dimensional periodic cell is developed to minimize the free energy with respect to the order parameters. Based on the developed numerical methods, we rediscover decagonal and dodecagonal quasicrystalline phases, and find diverse periodic phases and complex modulated phases. Furthermore, phase diagrams are obtained in various phase spaces by comparing the free energies of different candidate structures. It does show not only the important roles of system parameters, but also the effect of optimizing computational domain. In particular, the optimization of computational cell allows us to capture the ground states and phase behavior with higher fidelity. We also make some discussions on our results and show the potential of applying our numerical methods to a larger class of mean-field free energy functionals.Comment: 26 pages, 13 figures; accepted by Communications in Computational Physic
    • …
    corecore