309 research outputs found
Estimating fluorescence lifetimes using the expectation-maximisation algorithm
The expectation-maximisation (EM) algorithm uses incomplete data to get the estimation of the probabilistic model parameter, and it has been widely used in machine learning. EM techniques are applied to estimate fluorescence lifetimes in time-correlated single-photon counting based fluorescence lifetime imaging experiments without measuring the instrument response functions. The results of Monte Carlo simulations indicate that the proposed approach can obtain better or comparable accuracy and precision performances than the previously reported method
Recommended from our members
Analysis of Morphological Parameters to Differentiate Rupture Status in Anterior Communicating Artery Aneurysms
In contrast to size, the association of morphological characteristics of intracranial aneurysms with rupture has not been established in a systematic manner. We present an analysis of the morphological variables that are associated with rupture in anterior communicating artery aneurysms to determine site-specific risk variables. One hundred and twenty-four anterior communicating artery aneurysms were treated in a single institution from 2005 to 2010, and CT angiograms (CTAs) or rotational angiography from 79 patients (42 ruptured, 37 unruptured) were analyzed. Vascular imaging was evaluated with 3D Slicer© to generate models of the aneurysms and surrounding vasculature. Morphological parameters were examined using univariate and multivariate analysis and included aneurysm volume, aspect ratio, size ratio, distance to bifurcation, aneurysm angle, vessel angle, flow angle, and parent-daughter angle. Multivariate logistic regression revealed that size ratio, flow angle, and parent-daughter angle were associated with aneurysm rupture after adjustment for age, sex, smoking history, and other clinical risk factors. Simple morphological parameters such as size ratio, flow angle, and parent-daughter angle may thus aid in the evaluation of rupture risk of anterior communicating artery aneurysms
Coulomb corrections for quasielastic (e,e') scattering: eikonal approximation
We address the problem of including Coulomb distortion effects in inclusive
quasielastic (e,e') reactions using the eikonal approximation. Our results
indicate that Coulomb corrections may become large for heavy nuclei for certain
kinematical regions. The issues of our model are presented in detail and the
results are compared to calculations of the Ohio group, where Dirac wave
functions were used both for electrons and nucleons. Our results are in good
agreement with those obtained by exact calculations.Comment: 29 pages, 10 figures, LATEX (elsart.cls). Final version to be
publishe
Morphological Parameters Associated with Ruptured Posterior Communicating Aneurysms
The rupture risk of unruptured intracranial aneurysms is known to be dependent on the size of the aneurysm. However, the association of morphological characteristics with ruptured aneurysms has not been established in a systematic and location specific manner for the most common aneurysm locations. We evaluated posterior communicating artery (PCoA) aneurysms for morphological parameters associated with aneurysm rupture in that location. CT angiograms were evaluated to generate 3-D models of the aneurysms and surrounding vasculature. Univariate and multivariate analyses were performed to evaluate morphological parameters including aneurysm volume, aspect ratio, size ratio, distance to ICA bifurcation, aneurysm angle, vessel angles, flow angles, and vessel-to-vessel angles. From 2005â2012, 148 PCoA aneurysms were treated in a single institution. Preoperative CTAs from 63 patients (40 ruptured, 23 unruptured) were available and analyzed. Multivariate logistic regression revealed that smaller volume (p = 0.011), larger aneurysm neck diameter (0.048), and shorter ICA bifurcation to aneurysm distance (p = 0.005) were the most strongly associated with aneurysm rupture after adjusting for all other clinical and morphological variables. Multivariate subgroup analysis for patients with visualized PCoA demonstrated that larger neck diameter (p = 0.018) and shorter ICA bifurcation to aneurysm distance (p = 0.011) were significantly associated with rupture. Intracerebral hemorrhage was associated with smaller volume, larger maximum height, and smaller aneurysm angle, in addition to lateral projection, male sex, and lack of hypertension. We found that shorter ICA bifurcation to aneurysm distance is significantly associated with PCoA aneurysm rupture. This is a new physically intuitive parameter that can be measured easily and therefore be readily applied in clinical practice to aid in the evaluation of patients with PCoA aneurysms
Thunderclap headache triggered by micturition: responsive to nimodipine
Primary thunderclap headache (TCH) is a rare condition, of which the onset can be triggered by coughing, exercise, and sexual activity. Micturition is a recognized trigger of secondary TCH with pheochromocytoma in bladder, but not of primary TCH. We describe a patient with an apparent primary TCH, which repeatedly occurred immediately after micturition until she achieved a therapeutic dosage of nimodipine
Researching AI Legibility Through Design
Everyday interactions with computers are increasingly likely to involve elements of Artificial Intelligence (AI). Encompassing a broad spectrum of technologies and applications, AI poses many challenges for HCI and design. One such challenge is the need to make AIâs role in a given system legible to the user in a meaningful way. In this paper we employ a Research through Design (RtD) approach to explore how this might be achieved. Building on contemporary concerns and a thorough exploration of related research, our RtD process reflects on designing imagery intended to help increase AI legibility for users. The paper makes three contributions. First, we thoroughly explore prior research in order to critically unpack the AI legibility problem space. Second, we respond with design proposals whose aim is to enhance the legibility, to users, of systems using AI. Third, we explore the role of design-led enquiry as a tool for critically exploring the intersection between HCI and AI research
Influence of Compensating Defect Formation on the Doping Efficiency and Thermoelectric Properties of Cu_(2-y)Se_(1âx)Br_x
The superionic conductor Cu_(2âÎŽ)Se has been shown to be a promising thermoelectric at higher temperatures because of very low lattice thermal conductivities, attributed to the liquid-like mobility of copper ions in the superionic phase. In this work, we present the potential of copper selenide to achieve a high figure of merit at room temperature, if the intrinsically high hole carrier concentration can be reduced. Using bromine as a dopant, we show that reducing the charge carrier concentration in Cu_(2âÎŽ)Se is in fact possible. Furthermore, we provide profound insight into the complex defect chemistry of bromine doped Cu_(2âÎŽ)Se via various analytical methods and investigate the consequential influences on the thermoelectric transport properties. Here, we show, for the first time, the effect of copper vacancy formation as compensating defects when moving the Fermi level closer to the valence band edge. These compensating defects provide an explanation for the often seen doping inefficiencies in thermoelectrics via defect chemistry and guide further progress in the development of new thermoelectric materials
Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data
A search for high-energy neutrinos interacting within the IceCube detector
between 2010 and 2012 provided the first evidence for a high-energy neutrino
flux of extraterrestrial origin. Results from an analysis using the same
methods with a third year (2012-2013) of data from the complete IceCube
detector are consistent with the previously reported astrophysical flux in the
100 TeV - PeV range at the level of per flavor and reject a
purely atmospheric explanation for the combined 3-year data at .
The data are consistent with expectations for equal fluxes of all three
neutrino flavors and with isotropic arrival directions, suggesting either
numerous or spatially extended sources. The three-year dataset, with a livetime
of 988 days, contains a total of 37 neutrino candidate events with deposited
energies ranging from 30 to 2000 TeV. The 2000 TeV event is the highest-energy
neutrino interaction ever observed.Comment: 8 pages, 5 figures. Accepted by PRL. The event catalog, event
displays, and other data tables are included after the final page of the
article. Changed from the initial submission to reflect referee comments,
expanding the section on atmospheric backgrounds, and fixes offsets of up to
0.9 seconds in reported event times. Address correspondence to: J. Feintzeig,
C. Kopper, N. Whitehor
- âŠ