245 research outputs found
Quantum Gravity Corrections to the One Loop Scalar Self-Mass during Inflation
We compute the one loop corrections from quantum gravity to the
self-mass-squared of a massless, minimally coupled scalar on a locally de
Sitter background. The calculation was done using dimensional regularization
and renormalized by subtracting fourth order BPHZ counterterms. Our result
should determine whether quantum gravitational loop corrections can
significantly alter the dynamics of a scalar inflaton.Comment: 47 pages, 3 figures, 20 tables, uses LaTeX 2 epsilon, version 2
revised for publication in Physical Review
Recommended from our members
Yoga Therapy for the Mind Eight-Week Course: Participants׳ Experiences
Mindfulness-based therapies are becoming increasingly common in the treatment of mental health conditions. While the popularity of yoga continues to rise in Western culture, little has been done to explore the psychological benefits of yoga from a qualitative, clinical perspective. This study explores participant experiences of the āYoga Therapy for the Mind Eight-Week Courseā (YTFTM), an international, manualized yoga and mindfulness-based intervention for depression and anxiety. Eight female participants took part in semi-structured interviews, and transcripts were analyzed using an interpretative phenomenological analysis, with four master themes emerging: āPersonal Journey of Change,ā āAmbivalence,ā āMind/Body Connection,ā and āGroup Experience.ā The findings highlight potential challenges of yoga and mindfulness-based interventions and the importance of providing adequate support in overcoming these. Findings also reveal that participants experience psychological benefits from the practice of yoga asana in addition to mindfulness, such as a more holistic understanding of psychological distress, adaptive coping strategies, and enhanced well-being
Double-wedged Wollaston-type polarimeter design and integration to RTT150-TFOSC; initial tests, calibration, and characteristics
Ā© 2015, Springer Science+Business Media Dordrecht. Photometric and spectroscopic observation capabilities of 1.5-m RussianāTurkish Telescope RTT150 has been broadened with the integration of presented polarimeter. The well-known double-wedged Wollaston-type dual-beam technique was preferred and applied to design and produce it. The designed polarimeter was integrated into the telescope detector TFOSC, and called TFOSC-WP. Its capabilities and limitations were attempted to be determined by a number of observation sets. Non-polarized and strongly polarized stars were observed to determine its limitations as well as its linearity. An instrumental intrinsic polarization was determined for the 1 Ć 5 arcmin field of view in equatorial coordinate system, the systematic error of polarization degree as 0.2 %, and position angle as 1.9ā. These limitations and capabilities are denoted as good enough to satisfy telescopesā present and future astrophysical space missions related to GAIA and SRG projects
Non-local SFT Tachyon and Cosmology
Cosmological scenarios built upon the generalized non-local String Field
Theory and -adic tachyons are examined. A general kinetic operator involving
an infinite number of derivatives is studied as well as arbitrary parameter
. The late time dynamics of just the tachyon around the non-perturbative
vacuum is shown to leave the cosmology trivial. A late time behavior of the
tachyon and the scale factor of the FRW metric in the presence of the
cosmological constant or a perfect fluid with is constructed explicitly
and a possibility of non-vanishing oscillations of the total effective state
parameter around the phantom divide is proven.Comment: 17 pages, LaTeX; v2: JHEP3 class is used, references adde
Loop Corrections to Cosmological Perturbations in Multi-field Inflationary Models
We investigate one-loop quantum corrections to the power spectrum of
adiabatic perturbation from entropy modes/adiabatic mode cross-interactions in
multiple DBI inflationary models. We find that due to the non-canonical kinetic
term in DBI models, the loop corrections are enhanced by slow-varying parameter
and small sound speed . Thus, in general the loop-corrections
in multi-DBI models can be large. Moreover, we find that the loop-corrections
from adiabatic/entropy cross-interaction vertices are IR finite.Comment: 21 pages, 7 figures; v2, typos corrected, ref added; v3 typos
corrected, version for publishing in jca
New mechanism to cross the phantom divide
Recently, type Ia supernovae data appear to support a dark energy whose
equation of state crosses -1, which is a much more amazing problem than the
acceleration of the universe. We show that it is possible for the equation of
state to cross the phantom divide by a scalar field in the gravity with an
additional inverse power-law term of Ricci scalar in the Lagrangian. The
necessary and sufficient condition for a universe in which the dark energy can
cross the phantom divide is obtained. Some analytical solutions with or
are obtained. A minimal coupled scalar with different potentials,
including quadratic, cubic, quantic, exponential and logarithmic potentials are
investigated via numerical methods, respectively. All these potentials lead to
the crossing behavior. We show that it is a robust result which is hardly
dependent on the concrete form of the potential of the scalar.Comment: 11 pages, 5 figs, v3: several references added, to match the
published versio
Curvature-coupling dependence of membrane protein diffusion coefficients
We consider the lateral diffusion of a protein interacting with the curvature
of the membrane. The interaction energy is minimized if the particle is at a
membrane position with a certain curvature that agrees with the spontaneous
curvature of the particle. We employ stochastic simulations that take into
account both the thermal fluctuations of the membrane and the diffusive
behavior of the particle. In this study we neglect the influence of the
particle on the membrane dynamics, thus the membrane dynamics agrees with that
of a freely fluctuating membrane. Overall, we find that this curvature-coupling
substantially enhances the diffusion coefficient. We compare the ratio of the
projected or measured diffusion coefficient and the free intramembrane
diffusion coefficient, which is a parameter of the simulations, with analytical
results that rely on several approximations. We find that the simulations
always lead to a somewhat smaller diffusion coefficient than our analytical
approach. A detailed study of the correlations of the forces acting on the
particle indicates that the diffusing inclusion tries to follow favorable
positions on the membrane, such that forces along the trajectory are on average
smaller than they would be for random particle positions.Comment: 16 pages, 8 figure
One-loop corrections to a scalar field during inflation
The leading quantum correction to the power spectrum of a
gravitationally-coupled light scalar field is calculated, assuming that it is
generated during a phase of single-field, slow-roll inflation.Comment: 33 pages, uses feynmp.sty and ioplatex journal style. v2: matches
version published in JCAP. v3: corrects sign error in Eq. (58). Corrects
final coefficient of the logarithm in Eq. (105). Small corrections to
discussion of divergences in 1-point function. Minor improvements to
discussion of UV behaviour in Sec. 4.
The Tensor-Vector-Scalar theory and its cosmology
Over the last few decades, astronomers and cosmologists have accumulated vast
amounts of data clearly demonstrating that our current theories of fundamental
particles and of gravity are inadequate to explain the observed discrepancy
between the dynamics and the distribution of the visible matter in the
Universe. The Modified Newtonian Dynamics (MOND) proposal aims at solving the
problem by postulating that Newton's second law of motion is modified for
accelerations smaller than ~10^{-10}m/s^2. This simple amendment, has had
tremendous success in explaining galactic rotation curves. However, being
non-relativistic, it cannot make firm predictions for cosmology.
A relativistic theory called Tensor-Vector-Scalar (TeVeS) has been proposed
by Bekenstein building on earlier work of Sanders which has a MOND limit for
non-relativistic systems.
In this article I give a short introduction to TeVeS theory and focus on its
predictions for cosmology as well as some non-cosmological studies.Comment: 44 pages, topical review for Classical and Quantum Gravit
One-loop corrections to the curvature perturbation from inflation
An estimate of the one-loop correction to the power spectrum of the
primordial curvature perturbation is given, assuming it is generated during a
phase of single-field, slow-roll inflation. The loop correction splits into two
parts, which can be calculated separately: a purely quantum-mechanical
contribution which is generated from the interference among quantized field
modes around the time when they cross the horizon, and a classical contribution
which comes from integrating the effect of field modes which have already
passed far beyond the horizon. The loop correction contains logarithms which
may invalidate the use of naive perturbation theory for cosmic microwave
background (CMB) predictions when the scale associated with the CMB is
exponentially different from the scale at which the fundamental theory which
governs inflation is formulated.Comment: 28 pages, uses feynmp.sty and ioplatex journal style. v2: supersedes
version published in JCAP. Some corrections and refinements to the discussion
and conclusions. v3: Corrects misidentification of quantum correction with an
IR effect. Improvements to the discussio
- ā¦