261 research outputs found
The Coincidence Limit of the Graviton Propagator in de Donder Gauge on de Sitter Background
We explicitly work out the de Sitter breaking contributions to the recent
solution for the de Donder gauge graviton propagator on de Sitter. We also
provide explicit power series expansions for the two structure functions, which
are suitable for implementing dimensional regularization. And we evaluate the
coincidence limit of the propagator.Comment: 41 pages, uses LaTeX 2e, version 2 has some typoes correcte
Quantum Gravity Corrections to the One Loop Scalar Self-Mass during Inflation
We compute the one loop corrections from quantum gravity to the
self-mass-squared of a massless, minimally coupled scalar on a locally de
Sitter background. The calculation was done using dimensional regularization
and renormalized by subtracting fourth order BPHZ counterterms. Our result
should determine whether quantum gravitational loop corrections can
significantly alter the dynamics of a scalar inflaton.Comment: 47 pages, 3 figures, 20 tables, uses LaTeX 2 epsilon, version 2
revised for publication in Physical Review
Charged Scalar Self-Mass during Inflation
We compute the one loop self-mass of a charged massless, minimally coupled
scalar in a locally de Sitter background geometry. The computation is done in
two different gauges: the noninvariant generalization of Feynman gauge which
gives the simplest expression for the photon propagator and the de Sitter
invariant gauge of Allen and Jacobson. In each case dimensional regularization
is employed and fully renormalized results are obtained. By using our result in
the linearized, effective field equations one can infer how the scalar responds
to the dielectric medium produced by inflationary particle production. We also
work out the result for a conformally coupled scalar. Although the conformally
coupled case is of no great physical interest the fact that we obtain a
manifestly de Sitter invariant form for its self-mass-squared establishes that
our noninvariant gauge introduces no physical breaking of de Sitter invariance
at one loop order.Comment: 41 pages, LaTeX 2epsilon, 3 figures, uses axodra
One Loop Corrected Mode Functions for SQED during Inflation
We solve the one loop effective scalar field equations for spatial plane
waves in massless, minimally coupled scalar quantum electrodynamics on a
locally de Sitter background. The computation is done in two different gauges:
a non-de Sitter invariant analogue of Feynman gauge, and in the de Sitter
invariant, Lorentz gauge. In each case our result is that the finite part of
the conformal counterterm can be chosen so that the mode functions experience
no significant one loop corrections at late times. This is in perfect agreement
with a recent, all orders stochastic prediction.Comment: 26 pages, uses LaTeX 2 epsilon, no figures, version 2 has an updated
reference lis
A Completely Regular Quantum Stress Tensor with
For many quantum field theory computations in cosmology it is not possible to
use the flat space trick of obtaining full, interacting states by evolving free
states over infinite times. State wave functionals must be specified at finite
times and, although the free states suffice to obtain the lowest order effects,
higher order corrections necessarily involve changes of the initial state.
Failing to correctly change the initial state can result in effective field
equations which diverge on the initial value surface, or which contain tedious
sums of terms that redshift like inverse powers of the scale factor. In this
paper we verify a conjecture from 2004 that the lowest order initial state
correction can indeed absorb the initial value divergences and all the
redshifting terms of the two loop expectation value of the stress tensor of a
massless, minimally coupled scalar with a quartic self interaction on
nondynamical de Sitter background.Comment: 23 pages, 1 figur
Non-local SFT Tachyon and Cosmology
Cosmological scenarios built upon the generalized non-local String Field
Theory and -adic tachyons are examined. A general kinetic operator involving
an infinite number of derivatives is studied as well as arbitrary parameter
. The late time dynamics of just the tachyon around the non-perturbative
vacuum is shown to leave the cosmology trivial. A late time behavior of the
tachyon and the scale factor of the FRW metric in the presence of the
cosmological constant or a perfect fluid with is constructed explicitly
and a possibility of non-vanishing oscillations of the total effective state
parameter around the phantom divide is proven.Comment: 17 pages, LaTeX; v2: JHEP3 class is used, references adde
Dissipative Future Universe without Big Rip
The present study deals with dissipative future universe without big rip in
context of Eckart formalism. The generalized chaplygin gas, characterized by
equation of state , has been considered as
a model for dark energy due to its dark-energy-like evolution at late time. It
is demonstrated that, if the cosmic dark energy behaves like a fluid with
equation of state ; , as well as chaplygin gas
simultaneously then the big rip problem does not arises and the scale factor is
found to be regular for all time.Comment: 6 pages, 2 figures, To appear in Int. J. Theor. Phy
Curvature-coupling dependence of membrane protein diffusion coefficients
We consider the lateral diffusion of a protein interacting with the curvature
of the membrane. The interaction energy is minimized if the particle is at a
membrane position with a certain curvature that agrees with the spontaneous
curvature of the particle. We employ stochastic simulations that take into
account both the thermal fluctuations of the membrane and the diffusive
behavior of the particle. In this study we neglect the influence of the
particle on the membrane dynamics, thus the membrane dynamics agrees with that
of a freely fluctuating membrane. Overall, we find that this curvature-coupling
substantially enhances the diffusion coefficient. We compare the ratio of the
projected or measured diffusion coefficient and the free intramembrane
diffusion coefficient, which is a parameter of the simulations, with analytical
results that rely on several approximations. We find that the simulations
always lead to a somewhat smaller diffusion coefficient than our analytical
approach. A detailed study of the correlations of the forces acting on the
particle indicates that the diffusing inclusion tries to follow favorable
positions on the membrane, such that forces along the trajectory are on average
smaller than they would be for random particle positions.Comment: 16 pages, 8 figure
Loop Corrections to Cosmological Perturbations in Multi-field Inflationary Models
We investigate one-loop quantum corrections to the power spectrum of
adiabatic perturbation from entropy modes/adiabatic mode cross-interactions in
multiple DBI inflationary models. We find that due to the non-canonical kinetic
term in DBI models, the loop corrections are enhanced by slow-varying parameter
and small sound speed . Thus, in general the loop-corrections
in multi-DBI models can be large. Moreover, we find that the loop-corrections
from adiabatic/entropy cross-interaction vertices are IR finite.Comment: 21 pages, 7 figures; v2, typos corrected, ref added; v3 typos
corrected, version for publishing in jca
Bouncing and Accelerating Solutions in Nonlocal Stringy Models
A general class of cosmological models driven by a non-local scalar field
inspired by string field theories is studied. In particular cases the scalar
field is a string dilaton or a string tachyon. A distinguished feature of these
models is a crossing of the phantom divide. We reveal the nature of this
phenomena showing that it is caused by an equivalence of the initial non-local
model to a model with an infinite number of local fields some of which are
ghosts. Deformations of the model that admit exact solutions are constructed.
These deformations contain locking potentials that stabilize solutions.
Bouncing and accelerating solutions are presented.Comment: Minor corrections, references added, published in JHE
- …