14 research outputs found

    Coupled thermo-electrical dispatch strategy with AI forecasting for optimal sizing of grid-connected hybrid renewable energy systems

    Get PDF
    In multi-energy systems the full utilisation of the generated energy is a challenge. Integrating heat and electricity supply at the system level design could provide an opportunity to address this challenge. In this paper we introduce and examine two coupled thermal-electrical dispatch strategies for grid-connected hybrid multi-energy systems supplying electrical and thermal demand loads. The dispatch strategy employs forecasting of energy resources and demand loads to prioritise supplying the thermal load in times of renewable surplus. Four forecasting algorithms, namely, baseline forecast, Facebook Prophet (FBP), Neural Prophet (NP), and Long Short-Term Memory model (LSTM) are implemented and used to generate annual forecast data for solar irradiance, wind speed, and thermal and electrical demand loads. To integrate forecast data within the dispatch strategy, new parameters are proposed to quantify the expected available energy within the forecast time horizon. A building complex for the Department of Education in the UK is used for conducting a system design case study. A genetic algorithm-based multi-objective optimisation with the levelised costs of electricity and heat as two objectives is conducted. The results show that the proposed dispatch algorithm produces systems with reduced levelised costs compared to the base case of using utility gas and electricity. Forecasting is particularly useful in reducing cost of heat, as it can prioritise supplying the thermal load in times of renewable surplus. LSTM proved to be the most accurate forecasting algorithm for this case, where the data has strong seasonality and trends. The main contribution of this work is to propose and demonstrate the effectiveness of tightly coupling thermo-electrical dispatch algorithms of HRES from the design stage, and how to effectively integrate forecast data within such algorithms

    Resting and exercise haemodynamic characteristics of patients with advanced heart failure and preserved ejection fraction

    Get PDF
    Aims: This study aimed to describe haemodynamic features of patients with advanced heart failure with preserved ejection fraction (HFpEF) as defined by the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Methods and results: We used pooled data from two dedicated HFpEF studies with invasive exercise haemodynamic protocols, the REDUCE LAP-HF (Reduce Elevated Left Atrial Pressure in Patients with Heart Failure) trial and the REDUCE LAP-HF I trial, and categorized patients according to advanced heart failure (AdHF) criteria. The well-characterized HFpEF patients were considered advanced if they had persistent New York Heart Association classification of III–IV and heart failure (HF) hospitalization < 12 months and a 6 min walk test distance < 300 m. Twenty-four (22%) out of 108 patients met the AdHF criteria. On evaluation, clinical characteristics and resting haemodynamics were not different in the two groups. Patients with AdHF had lower work capacity compared with non-advanced patients (35 ± 16 vs. 45 ± 18 W, P = 0.021). Workload-corrected pulmonary capillary wedge pressure normalized to body weight (PCWL) was higher in AdHF patients compared with non-advanced (112 ± 55 vs. 86 ± 49 mmHg/W/kg, P = 0.04). Further, AdHF patients had a smaller increase in cardiac index during exercise (1.1 ± 0.7 vs. 1.6 ± 0.9 L/min/m2, P = 0.028). Conclusions: A significantly higher PCWL and lower cardiac index reserve during exercise were observed in AdHF patients compared with non-advanced. These differences were not apparent at rest. Therapies targeting the haemodynamic compromise associated with advanced HFpEF are needed

    RB but not R-HCVAD is a feasible induction regimen prior to auto-HCT in frontline MCL: results of SWOG Study S1106

    Get PDF
    Aggressive induction chemotherapy followed by autologous haematopoietic stem cell transplant (auto-HCT) is effective for younger patients with mantle cell lymphoma (MCL). However, the optimal induction regimen is widely debated. The Southwesterm Oncology Group S1106 trial was designed to assess rituximab plushyperCVAD/MTX/ARAC (hyperfractionated cyclophosphamide, vincristine, doxorubicin and dexamethasone, alternating with high dose cytarabine and methotrexate) (RH) versus rituximab plus bendamustine (RB) in a randomized phase II trial to select a pre-transplant induction regimen for future development. Patients had previously untreated stage III, IV, or bulky stage II MCL and received either 4 cycles of RH or 6 cycles of RB, followed by auto-HCT. Fifty-three of a planned 160 patients were accrued; an unacceptably high mobilization failure rate (29%) on the RH arm prompted premature study closure. The estimated 2-year progression-free survival (PFS) was 81% vs. 82% and overall survival (OS) was 87% vs. 88% for RB and RH, respectively. RH is not an ideal platform for future multi-centre transplant trials in MCL. RB achieved a 2-year PFS of 81% and a 78% MRD negative rate. Premature closure of the study limited the sample size and the precision of PFS estimates and MRD rates. However, RB can achieve a deep remission and could be a platform for future trials in MCL

    Integration and optimisation of high-penetration Hybrid Renewable Energy Systems for fulfilling electrical and thermal demand for off-grid communities

    Full text link
    The recent steep decline in the cost of PV panels and wind turbines provides an opportunity to utilise Hybrid Renewable Energy Systems (HRES) to fulfil thermal loads as well as the electrical demand. Two coupled system architectures are proposed and studied along with the base case of uncoupled architecture for comparison. The coupled systems include wind turbines, PV panels, battery bank, diesel generators (DG) or diesel-based Combined Heat and Power unit (CHP), boiler and thermal storage tank. Adopting a full factorial design of the experiment approach for each architecture, the optimum system is determined for a variety of combinations of the major influencing factors, namely, renewable resource intensity, thermal-to-electrical demand ratio and price of diesel fuel. Statistical analysis is conducted to investigate the effects of each factor on the cost of the system. The optimisation and statistical analysis show that, based on current prevailing components prices, an integrated system, which utilises excess electricity for fulfilling thermal loads, is cheaper than the base case with or without CHP unit

    Machining Unidirectional Composites using Single-Point Tools: Analysis of Cutting Forces, Chip Formation and Surface Integrity

    Get PDF
    The need for high quality machining of composite materials is rising due to the increased utilisation of these materials across several applications. This paper presents experimental findings of orthogonal cutting of unidirectional glass fibre reinforced plastic (UD-GFRP) composites using HSS single-point cutting tools. Key process indicators including cutting forces, chip formation and surface integrity were evaluated. Full factorial design is employed with fibre orientation, depth of cut, cutting speed and rake angle as process control variables. Fibre orientation and depth of cut were found to be the most significant factors affecting the investigated responses. Lower cutting forces and better surface quality were obtained at 0o fibre orientation and lower depth of cut. Cutting at 45o fibre orientation generated extremely damaged surfaces with relatively high average surface roughness values and should be avoided in practical applications

    Enhancing thermal conductivity of paraffin wax 53–57 °C using expanded graphite

    Full text link
    The latent heat thermal storage using Phase Change Materials (PCMs) is one of the essential aspects to be addressed for rapid expansion of utilisation of Renewable Energy sources and waste heat. The major disadvantage of PCMs, deployed in such thermal storage systems, is their low thermal conductivity and, in some cases, low latent heat.Paraffin wax/expanded graphite (PW/EG) composite PCMs with the EG mass fraction of 2%, 4%, and 6% were prepared by absorption of molten organic material into the EG structure. FireCarb TEG-315 and FireCarb TEG-160 were used as EG of A- and B-type, respectively, and PW 53–57 °C was deployed as the PCM in this study. Polarizing optical microscope, scanning electron microscopes and Fourier transform infrared spectroscopy were used to characterize the structure of composite PCMs. Thermal properties of pure Paraffin and produced composite materials were determined using a differential scanning calorimeter and thermal conductivity analyser.One of originalities of this work is that the statistical method of assessment of heterogeneity in composite PCMs was proposed for the first time with the use of Matlab software. This method was deployed for the quantitative assessment of uniformity of the EG distribution in composite PCMs structure.The novelty of obtained results is in detection of intermolecular interaction between B-type EG and PW. This interaction further enhances thermo-physical properties of the PW/EG composites. In contrast to pure PW and PW/A-type EG composite PCMs, in which the solid-solid transition and solid-liquid phase change are observed, PW/B-type EG compositions exhibit only the solid-liquid phase change. The heat storage capacity in both types of compositions was found to be almost identical. Despite of prolonged sample's ultrasonic treatment, the structure of PCM compositions was found to be far from being homogeneous. However, the thermal conductivity of compositions with 6 wt % of EG was determined to be 0.977 W/m°C for the PCM with A-type EG and 1.263 W/m°C for the PCM with B-type EG in comparison with the value of 0.258 W/m°C for pure PW. These values of the thermal conductivity correspond to the enhancement ratios of 3.79 and 4.9, respectively. If uniformity in the EG distribution in PW can be improved, then the thermal conductivity of composite PCMs would also considerably increase.Findings of this work are being used for designing a cost efficient solar thermal storage system with the reduced charging/discharging times as a part of an international project funded by EC

    Pilot Randomized Controlled Trial to Reduce Readmission for Heart Failure Using Novel Tablet and Nurse Practitioner Education

    Full text link
    BACKGROUND: Heart failure education programs are not standardized. The best form of education is unclear. We evaluated whether addition of a novel tablet application to nurse practitioner (NP) education was superior to NP education alone in reducing 30-day readmission after heart failure hospitalization. METHODS: From February 2015-March 2016. patients admitted to a quaternary academic center with primary diagnosis of heart failure were randomized to 1) treatment - NP education plus tablet application (interactive conditional logic program that flags patient questions to medical staff), or 2) control - NP education. The primary outcome was reduction in 30-day readmission rate. Secondary outcomes included satisfaction and education assessed via survey. RESULTS: Randomization included 60 patients to treatment and 66 to control. A total of 13 patients withdrew prior to intervention (treatment n = 4, control n = 1) or were lost to follow-up (treatment n = 3, control n = 5). The 30-day readmission rate trended lower for treatment compared with control, but results were not statistically significant (13.2% [7/53]. 26.7% [16/60]. respectively, P = .08). Similarly, satisfaction trended higher with treatment than control (P = .08). Treatment patients rated explanations from their physicians higher than control (Always: 83.7%. 55.8%, respectively, P = .01). CONCLUSIONS: NP education plus tablet use was not associated with significantly lower 30-day readmission rates in comparison with NP alone, but a positive trend was seen. Patient satisfaction trended higher and heart failure explanations were better with NP education plus tablet. A larger study is needed to determine if NP education plus tablet reduces readmission rates following heart failure admission. (C) 2018 Elsevier Inc. All rights reserved.Ohio State University Department of Medicine seed grant award; National Institutes of Health (NIH) [L60 MD010857]; University of Colorado, Department of Medicine, Health Services Research Development Grant Award; University of Arizona Health Sciences, Strategic Priorities Faculty Initiative Grant12 month embargo; published online: 16 March 2018This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore