15 research outputs found

    Use of soft computing techniques in renewable energy hydrogen hybrid systems

    No full text
    Soft computing techniques are important tools that significantly improve the performance of energy systems. This chapter reviews their many contributions to renewable energy hydrogen hybrid systems, namely those systems that consist of different technologies (photovoltaic and wind, electrolyzers, fuel cells, hydrogen storage, piping, thermal and electrical/electronic control systems) capable as a whole of converting solar energy, storing it as chemical energy (in the form of hydrogen) and turning it back into electrical and thermal energy. Fuzzy logic decision-making methodologies can be applied to select amongst renewable energy alternative or to vary a dump load for regulating wind turbine speed or find the maximum power point available from arrays of photovoltaic modules. Dynamic fuzzy logic controllers can furthermore be utilized to coordinate the flow of hydrogen to fuel cells or employed for frequency control in micro- grid power systems. Neural networks are implemented to model, design and control renewable energy systems and to estimate climatic data such as solar irradiance and wind speeds. They have been demonstrated to predict with good accuracy system power usage and status at any point of time. Neural controls can also help in the minimization of energy production costs by optimal scheduling of power units. Genetic or evolutionary algorithms are able to provide approximate solutions to several complex tasks with high number of variables and non-linearities, like optimal operational strategy of a grid-parallel fuel cell power plant, optimization of control strategies for stand-alone renewable systems and sizing of photovoltaic systems. Particle swarm optimization techniques are applied to find optimal sizing of system components in an effort to minimize costs or coping with system failures to improve service quality. These techniques can also be implemented together to exploit their potential synergies while, at the same time, coping with their possible limitations. This chapter covers soft computing methods applied to renewable energy hybrid hydrogen systems by providing a description of their single or mixed implementation and relevance, together with a discussion of advantages and/or disadvantages in their applications. \uc2\ua9 Springer-Verlag Berlin Heidelberg 2011

    Preimplantation genetic diagnosis for Down syndrome pregnancy*

    No full text
    Objective: To evaluate the effect of preimplantation genetic diagnosis (PGD) conducted for women who had Down syndrome pregnancy previously. Methods: Trisomy 21 was diagnosed by using fluorescence in site hybridization (FISH) before embryo transfer in two women who had Down syndrome pregnancies. Each received one or two PGD cycles respectively. Results: Case 1: one PGD cycle was conducted, two oocytes were fertilized and biopsied. One embryo is of trisomy 21 and the other of monosomy 21. No embryo was transferred. Case 2: two PGD cycles were conducted, in total, sixteen oocytes were fertilized and biopsied. Four embryos were tested to be normal, six of trisomy 21, and one of monosomy 21. Five had no signal. Four normal embryos were transferred but no pregnancy resulted. Conclusion: For couples who had pregnancies with Down syndrome previously, PGD can be considered, and has been shown to be an effective strategy
    corecore