9 research outputs found

    The duplicated Y-specific amhy gene is conserved and linked to maleness in silversides of the genus Odontesthes

    Get PDF
    Sex-determining genes have been successively isolated in several teleosts. In Odontesthes hatcheri and O. bonariensis, the amhy gene has been identified as a master sex-determining gene. However, whether this gene is conserved along related species is still unknown. In this study, the presence of amhy and its association with phenotypic sex was analyzed in 10 species of Odontesthes genus. The primer sets from O. hatcheri that amplify both amhs successfully generated fragments that correspond to amha and amhy in all species. The full sequences of amhy and amha isolated for four key species revealed higher identity values among presumptive amhy, including the 0.5 Kbp insertion in the third intron and amhy-specific insertions/deletions. Amha was present in all specimens, regardless of species and sex, whereas amhy was amplified in most but not all phenotypic males. Complete association between amhy-homologue with maleness was found in O. argentinensis, O. incisa, O. mauleanum, O. perugiae, O. piquava, O. regia, and O. smitti, whereas O. humensis, O. mirinensis, and O. nigricans showed varied degrees of phenotypic/genotypic sex mismatch. The conservation of amhy gene in Odontesthes provide an interesting framework to study the evolution and the ecological interactions of genotypic and environmental sex determination in this group.Fil: Hattori, Ricardo Shohei. Sao Paulo Fisheries Institue. Unidade de Pesquisa e Desenvolvimento de Campos do Jordão; BrasilFil: Somoza, Gustavo Manuel. Universidad Nacional de San Martin. Instituto Tecnológico de Chascomús - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Tecnológico de Chascomús; ArgentinaFil: Fernandino, Juan Ignacio. Universidad Nacional de San Martin. Instituto Tecnológico de Chascomús - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Tecnológico de Chascomús; ArgentinaFil: Colautti, Dario César. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Limnología "Dr. Raúl A. Ringuelet". Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Limnología; ArgentinaFil: Miyoshi, Kaho. Tokyo University of Marine Science and Technology; JapónFil: Gong, Zhuang. Zhejiang Ocean University; ChinaFil: Yamamoto, Yoji. Tokyo University of Marine Science and Technology; JapónFil: Strüssmann, Carlos A.. Tokyo University of Marine Science and Technology; Japó

    A Duplicated, Truncated amh Gene Is Involved in Male Sex Determination in an Old World Silverside

    Full text link
    A master sex-determining gene, the Y chromosome-linked anti-Müllerian hormone (amhy) gene, has been described in two New World atheriniform species but little is known on the distribution, evolution, and function(s) of this gene in other Atheriniformes. Interestingly, amhy has been found to coexist with temperature-dependent sex determination (TSD), providing a unique opportunity to explore the interplay between genotypic and environmental sex determination. In this study, the search for an amhy homolog was extended to an Old World atheriniform, the cobaltcap silverside Hypoatherina tsurugae (Atherinidae). The full sequences, including the coding and noncoding regions, of the autosomal amh (amha) and a putative amhy were obtained. The deduced Amha and Amhy proteins comprised 511 and 340 amino acids (aa), respectively. PCR analysis with genomic DNA from wild adults and from laboratory-reared juveniles revealed a high, but not complete association of ∼95% between amhy and maleness. The spatiotemporal expression of amhy and amha during gonadal sex differentiation was analyzed by qRT-PCR and in situ hybridization (ISH). amhy transcription (in amhy-positive larvae) started before and peaked during histological differentiation of the gonads whereas amha was negligible during the same period in both genotypes. These results demonstrate that the amhy, although with some structural differences in relation to the amhy of some New World atheriniforms, is strongly associated with maleness and probably important for testicular development in this Old World atheriniform. Thus, amhy is a candidate sex determination gene in cobaltcap silverside and it will be key to scrutinize the mechanism of sex determination in this species

    Flatfishes colonised freshwater environments by acquisition of various DHA biosynthetic pathways

    Full text link
    The colonisation of freshwater environments by marine fishes has historically been considered a result of adaptation to low osmolality. However, most marine fishes cannot synthesise the physiologically indispensable fatty acid, docosahexaenoic acid (DHA), due to incomplete DHA biosynthetic pathways, which must be adapted to survive in freshwater environments where DHA is poor relative to marine environments. By analysing DHA biosynthetic pathways of one marine and three freshwater-dependent species from the flatfish family Achiridae, we revealed that functions of fatty acid metabolising enzymes have uniquely and independently evolved by multi-functionalisation or neofunctionalisation in each freshwater species, such that every functional combination of the enzymes has converged to generate complete and functional DHA biosynthetic pathways. Our results demonstrate the elaborate patchwork of fatty acid metabolism and the importance of acquiring DHA biosynthetic function in order for fish to cross the nutritional barrier at the mouth of rivers and colonise freshwater environments
    corecore