514 research outputs found

    The q-component static model : modeling social networks

    Full text link
    We generalize the static model by assigning a q-component weight on each vertex. We first choose a component (μ)(\mu) among the q components at random and a pair of vertices is linked with a color μ\mu according to their weights of the component (μ)(\mu) as in the static model. A (1-f) fraction of the entire edges is connected following this way. The remaining fraction f is added with (q+1)-th color as in the static model but using the maximum weights among the q components each individual has. This model is motivated by social networks. It exhibits similar topological features to real social networks in that: (i) the degree distribution has a highly skewed form, (ii) the diameter is as small as and (iii) the assortativity coefficient r is as positive and large as those in real social networks with r reaching a maximum around f≈0.2f \approx 0.2.Comment: 5 pages, 6 figure

    Evolution of the Protein Interaction Network of Budding Yeast: Role of the Protein Family Compatibility Constraint

    Full text link
    Understanding of how protein interaction networks (PIN) of living organisms have evolved or are organized can be the first stepping stone in unveiling how life works on a fundamental ground. Here we introduce a hybrid network model composed of the yeast PIN and the protein family interaction network. The essential ingredient of the model includes the protein family identity and its robustness under evolution, as well as the three previously proposed ones: gene duplication, divergence, and mutation. We investigate diverse structural properties of our model with parameter values relevant to yeast, finding that the model successfully reproduces the empirical data.Comment: 5 pages, 5 figures, 1 table. Title changed. Final version published in JKP

    Disassortativity of random critical branching trees

    Full text link
    Random critical branching trees (CBTs) are generated by the multiplicative branching process, where the branching number is determined stochastically, independent of the degree of their ancestor. Here we show analytically that despite this stochastic independence, there exists the degree-degree correlation (DDC) in the CBT and it is disassortative. Moreover, the skeletons of fractal networks, the maximum spanning trees formed by the edge betweenness centrality, behave similarly to the CBT in the DDC. This analytic solution and observation support the argument that the fractal scaling in complex networks originates from the disassortativity in the DDC.Comment: 3 pages, 2 figure

    Computation-Aware Data Aggregation

    Get PDF
    Data aggregation is a fundamental primitive in distributed computing wherein a network computes a function of every nodes\u27 input. However, while compute time is non-negligible in modern systems, standard models of distributed computing do not take compute time into account. Rather, most distributed models of computation only explicitly consider communication time. In this paper, we introduce a model of distributed computation that considers both computation and communication so as to give a theoretical treatment of data aggregation. We study both the structure of and how to compute the fastest data aggregation schedule in this model. As our first result, we give a polynomial-time algorithm that computes the optimal schedule when the input network is a complete graph. Moreover, since one may want to aggregate data over a pre-existing network, we also study data aggregation scheduling on arbitrary graphs. We demonstrate that this problem on arbitrary graphs is hard to approximate within a multiplicative 1.5 factor. Finally, we give an O(log n ? log(OPT/t_m))-approximation algorithm for this problem on arbitrary graphs, where n is the number of nodes and OPT is the length of the optimal schedule
    • …
    corecore