304 research outputs found

    Monitoring Aerosols from Space: What We can Say, and What We Can't

    Get PDF
    Aerosols are understood to play a significant role is the global energy balance, and especially on atmospheric as well as surface energy balances regionally. A combination of direct radiative cooling of the surface, atmospheric warming through diabatic heating, and indirect effects of aerosol on clouds are all thought to contribute to the net aerosol effect, though the magnitudes of each are both highly variable in space and time, and highly uncertain. Passive space-based remote sensing is a key tool for constraining these effects, due to the frequent, global coverage satellites can provide. However, information from such observations about total-column aerosol amount (i.e., aerosol optical depth or AOD), and especially about aerosol type, is limited. The current generation of passive aerosol remote-sensing instruments, including the Multi-angle Imaging SpectroRadiometer (MISR) and the MODerate resolution Imaging Spectroradiometer (MODIS) offer vast improvements over previous instruments, including AOD over water and much of the land surface, fine vs. coarse particle type over ocean from MODIS, and discrimination of about a dozen aerosol types from MISR under good retrieval conditions, based on particle size, shape, and single-scattering albedo (SSA) constraints. This presentation will summarize the capabilities and expected improvements in the currently available aerosol products, in light of required energy budget constraints. Ways of addressing the need for detailed information about particle microphysical properties, especially SSA, unobtainable from MISR or MODIS, will be discussed

    What We are Learning from (and About) the 10 Plus Year MISR Aerosol Data Record

    Get PDF
    Having a 10+ year data record from the Multi-angle Imaging SpectroRadiometer (MISR) significantly improves our opportunities to validate the retrieved aerosol optical depth (AOD) and especially particle microphysical property products. It also begins to raise the possibility of using the data to look for changes or even trends, at least on a regional basis. Further, we have had the opportunity to expand the database of wildfire smoke plume heights derived from the multiangle observations. This presentation will review the latest aerosol validation results and algorithm upgrades under consideration by the MISR team, and will summarize the current status of MISR global aerosol air mass type, and regional dust transport and smoke injection height products. The strengths and limitations of these data for constraining aerosol transport model simulations will receive special emphasis

    Reducing the Uncertainties in Direct Aerosol Radiative Forcing

    Get PDF
    Airborne particles, which include desert and soil dust, wildfire smoke, sea salt, volcanic ash, black carbon, natural and anthropogenic sulfate, nitrate, and organic aerosol, affect Earth's climate, in part by reflecting and absorbing sunlight. This paper reviews current status, and evaluates future prospects for reducing the uncertainty aerosols contribute to the energy budget of Earth, which at present represents a leading factor limiting the quality of climate predictions. Information from satellites is critical for this work, because they provide frequent, global coverage of the diverse and variable atmospheric aerosol load. Both aerosol amount and type must be determined. Satellites are very close to measuring aerosol amount at the level-of-accuracy needed, but aerosol type, especially how bright the airborne particles are, cannot be constrained adequately by current techniques. However, satellite instruments can map out aerosol air mass type, which is a qualitative classification rather than a quantitative measurement, and targeted suborbital measurements can provide the required particle property detail. So combining satellite and suborbital measurements, and then using this combination to constrain climate models, will produce a major advance in climate prediction

    Steps Toward an EOS-Era Aerosol Type Climatology

    Get PDF
    We still have a way to go to develop a global climatology of aerosol type from the EOS-era satellite data record that currently spans more than 12 years of observations. We have demonstrated the ability to retrieve aerosol type regionally, providing a classification based on the combined constraints on particle size, shape, and single-scattering albedo (SSA) from the MISR instrument. Under good but not necessarily ideal conditions, the MISR data can distinguish three-to-five size bins, two-to-four bins in SSA, and spherical vs. non-spherical particles. However, retrieval sensitivity varies enormously with scene conditions. So, for example, there is less information about aerosol type when the mid-visible aerosol optical depth (AOD) is less that about 0.15 or 0.2, or when the range of scattering angles observed is reduced by solar geometry, even though the quality of the AOD retrieval itself is much less sensitive to these factors. This presentation will review a series of studies aimed at assessing the capabilities, as well as the limitations, of MISR aerosol type retrievals involving wildfire smoke, desert dust, volcanic ash, and urban pollution, in specific cases where suborbital validation data are available. A synthesis of results, planned upgrades to the MISR Standard aerosol algorithm to improve aerosol type retrievals, and steps toward the development of an aerosol type quality flag for the Standard product, will also be covered

    Satellite-Model-Ground-based Inter-Comparisons (WG-3)

    Get PDF
    AERO-SAT is an international consortium of experts on aerosol remote sensing from ground and space. This initiative was established in 2013 (1) to accelerate the exchange of ideas and concepts and (2) to elevate the capabilities of satellite sensorsretrieval (aerosol) products, which are needed to constrain aerosol processing in and assist in evaluations of global modeling. The main goal of the meeting is to substantiate and invigorate the five AEROSAT working groups. On each of those five topics dedicated working groups are building up and will report on their initial activities followed by further related presentations and ample time for discussions. Organizers of the meeting held September 27-28, 2014 would like to post the presentations to a website

    A Three-Way Street: MISR and MODIS Provide Context, SEAC4RS Provides Detail and Validation, Models Complete the Picture

    Get PDF
    The Transported Smoke Survey had three objectives: to evaluate imager and polarimeter sensitivity to smoke properties (remote sensing validation); to study characteristics of transported smoke (chemistry/transport); and to assess rediative impact of smoke layers (radiation closure)

    Environmental snapshots from ACE-Asia

    Get PDF
    On five occasions spanning the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) field campaign in spring 2001, the Multiangle Imaging Spectroradiometer spaceborne instrument took data coincident with high-quality observations by instruments on two or more surface and airborne platforms. The cases capture a range of clean, polluted, and dusty aerosol conditions. With a three-stage optical modeling process, we synthesize the data from over 40 field instruments into layer-by-layer environmental snapshots that summarize what we know about the atmospheric and surface states at key locations during each event. We compare related measurements and discuss the implications of apparent discrepancies, at a level of detail appropriate for satellite retrieval algorithm and aerosol transport model validation. Aerosols within a few kilometers of the surface were composed primarily of pollution and Asian dust mixtures, as expected. Medium- and coarse-mode particle size distributions varied little among the events studied; however, column aerosol optical depth changed by more than a factor of 4, and the near-surface proportion of dust ranged between 25% and 50%. The amount of absorbing material in the submicron fraction was highest when near-surface winds crossed Beijing and the Korean Peninsula and was considerably lower for all other cases. Having simultaneous single-scattering albedo measurements at more than one wavelength would significantly reduce the remaining optical model uncertainties. The consistency of component particle microphysical properties among the five events, even in this relatively complex aerosol environment, suggests that global, satellite-derived maps of aerosol optical depth and aerosol mixture (air-mass-type) extent, combined with targeted in situ component microphysical property measurements, can provide a detailed global picture of aerosol behavior

    Airborne Particles: What We Have Learned About Their Role in Climate from Remote Sensing, and Prospects for Future Advances

    Get PDF
    Desert dust, wildfire smoke, volcanic ash, biogenic and urban pollution particles, all affect the regional-scale climate of Earth in places and at times; some have global-scale impacts on the column radiation balance, cloud properties, atmospheric stability structure, and circulation patterns. Remote sensing has played a central role in identifying the sources and transports of airborne particles, mapping their three-dimensional distribution and variability, quantifying their amount, and constraining aerosol air mass type. The measurements obtained from remote sensing have strengths and limitations, and their value for characterizing Earths environment is enhanced immensely when they are combined with direct, in situ observations, and used to constrain aerosol transport and climate models. A similar approach has been taken to study the role particles play in determining the climate of Mars, though based on far fewer observations. This presentation will focus what we have learned from remote sensing about the impacts aerosol have on Earths climate; a few points about how aerosols affect the climate of Mars will also be introduced, in the context of how we might assess aerosol-climate impacts more generally on other worlds

    Remote Sensing of Aerosols from Satellites: Why Has It Been Do Difficult to Quantify Aerosol-Cloud Interactions for Climate Assessment, and How Can We Make Progress?

    Get PDF
    The organizers of the National Academy of Sciences Arthur M. Sackler Colloquia Series on Improving Our Fundamental Understanding of the Role of Aerosol-Cloud Interactions in the Climate System would like to post Ralph Kahn's presentation entitled Remote Sensing of Aerosols from Satellites: Why has it been so difficult to quantify aerosol-cloud interactions for climate assessment, and how can we make progress? to their public website

    Steps Toward an EOS-Era Aerosol Air Mass Type Climatology

    Get PDF
    We still have a way to go to develop a global climatology of aerosol type from the EOS-era satellite data record that currently spans more than 12 years of observations. We have demonstrated the ability to retrieve aerosol type regionally, providing a classification based on the combined constraints on particle size, shape, and single-scattering albedo (SSA) from the MISR instrument. Under good but not necessarily ideal conditions, the MISR data can distinguish three-to-five size bins, two-to-four bins in SSA, and spherical vs. non-spherical particles. However, retrieval sensitivity varies enormously with scene conditions. So, for example, there is less information about aerosol type when the mid-visible aerosol optical depth (AOD) is less that about 0.15 or 0.2
    corecore