4 research outputs found

    Long-distance placement of substrate RNA by H/ACA proteins

    No full text
    The structural basis for accurate placement of substrate RNA by H/ACA proteins is studied using a nonintrusive fluorescence assay. A model substrate RNA containing 2-aminopurine immediately 3′ of the uridine targeted for modification produces distinct fluorescence signals that report the substrate's docking status within the enzyme active site. We combined substrate RNA with complete and subcomplexes of H/ACA ribonucleoprotein particles and monitored changes in the substrate conformation. Our results show that each of the three accessory proteins, as well as an active site residue, have distinct effects on substrate conformations, presumably as docking occurs. Interestingly, in some cases these effects are exerted far from the active site. Application of our data to an available structural model of the holoenzyme, enables the functional role of each accessory protein in substrate placement to come into view
    corecore