78 research outputs found

    Analytic treatment of geodesics in five-dimensional Myers-Perry space--times

    Full text link
    We present the complete set of analytical solutions of the geodesic equation in the five-dimensional Myers-Perry space-time with equal rotation parameter in terms of the Weierstra{\ss}' elliptic and Weierstra{\ss}' zeta and sigma functions. We study the underlying polynomials in the polar and radial equations which depend on the parameters of the metric and conserved quantities of a test particle and characterize the motion by their zeros. We exemplify the efficiency of the analytical method on the orbits of test particles.Comment: 15 pages, 7 figures, to be published in PRD. Version with improved reference

    Geodesic motion in the space-time of cosmic strings interacting via magnetic fields

    Full text link
    We study the geodesic motion of test particles in the space-time of two Abelian-Higgs strings interacting via their magnetic fields. These bound states of cosmic strings constitute a field theoretical realization of p-q-strings which are predicted by inflationary models rooted in String Theory, e.g. brane inflation. In contrast to previously studied models describing p-q-strings our model possesses a Bogomolnyi-Prasad-Sommerfield (BPS) limit. If cosmic strings exist it would be exciting to detect them by direct observation. We propose that this can be done by the observation of test particle motion in the space-time of these objects. In order to be able to make predictions we have to solve the field equations describing the configuration as well as the geodesic equation numerically. The geodesics can then be classified according to the test particle's energy, angular momentum and momentum along the string axis. We find that the interaction of two Abelian-Higgs strings can lead to the existence of bound orbits that would be absent without the interaction. We also discuss the minimal and maximal radius of orbits and comment on possible applications in the context of gravitational wave emission.Comment: v1: 22 pages including 17 figures; v2: new figure added, section on observables added; acccepted for publication in Phys. Rev.

    General Relativistic Effect of Gravitomagnetic Charge on Pulsar Magnetosphere and Particle Acceleration in a Polar Cap

    Full text link
    We study magnetospheric structure surrounding rotating magnetized neutron star with nonvanishing NUT (Newman-Tamburino-Unti) parameter. For the simplicity of calculations Goldreich-Julian charge density is analyzed for the aligned neutron star with zero inclination between magnetic field, gravitomagnetic field and rotation axis. From the system of Maxwell equations in spacetime of slowly rotating NUT star, second-order differential equation for electrostatic potential is derived. Analytical solution of this equation indicates the general relativistic modification of an accelerating electric field and charge density along the open field lines by the gravitomagnetic charge. The implication of this effect to the magnetospheric energy loss problem is underlined. In the second part of the paper we derive the equations of motion of test particles in magnetosphere of slowly rotating NUT star. Then we analyze particle motion in the polar cap and show that NUT parameter can significantly change conditions for particle acceleration.Comment: 21 pages, 6 figures, accepted for publication in Ap

    Analytic treatment of complete and incomplete geodesics in Taub-NUT space-times

    Full text link
    We present the complete set of analytical solutions of the geodesic equation in Taub-NUT space-times in terms of the Weierstrass elliptic function. We systematically study the underlying polynomials and characterize the motion of test particles by its zeros. Since the presence of the "Misner string" in the Taub-NUT metric has led to different interpretations, we consider these in terms of the geodesics of the space-time. In particular, we address the geodesic incompleteness at the horizons discussed by Misner and Taub, and the analytic extension of Miller, Kruskal and Godfrey, and compare with the Reissner-Nordstr\"om space-time.Comment: 22 pages, 14 figures, accepted for publication in PR

    External Electromagnetic Fields of a Slowly Rotating Magnetized Star with Gravitomagnetic Charge

    Full text link
    We study Maxwell equations in the external background spacetime of a slowly rotating magnetized NUT star and find analytical solutions for the exterior electric fields after separating the equations of electric field into angular and radial parts in the lowest order approximation. The star is considered isolated and in vacuum, with dipolar magnetic field aligned with the axis of rotation. The contribution to the external electric field of star from the NUT charge is considered in detail.Comment: 6 pages, 2 figures, accepted for publication in Astrophysics and Space Scienc

    The Real Scalar Field Equation for Nariai Black Hole in the 5D Schwarzschild-de Sitter Black String Space

    Full text link
    The Nariai black hole, whose two horizons are lying close to each other, is an extreme and important case in the research of black hole. In this paper we study the evolution of a massless scalar field scattered around in 5D Schwarzschild-de Sitter black string space. Using the method shown by Brevik and Simonsen (2001) we solve the scalar field equation as a boundary value problem, where real boundary condition is employed. Then with convenient replacement of the 5D continuous potential by square barrier, the reflection and transmission coefficients (R,TR, T) are obtained. At last, we also compare the coefficients with usual 4D counterpart.Comment: 10 pages,6 figures.To appear in Int. J. Mod. Phys.

    Particle Motion and Electromagnetic Fields of Rotating Compact Gravitating Objects with Gravitomagnetic Charge

    Full text link
    The exact solution for the electromagnetic field occuring when the Kerr-Taub-NUT compact object is immersed (i) in an originally uniform magnetic field aligned along the axis of axial symmetry (ii) in dipolar magnetic field generated by current loop has been investigated. Effective potential of motion of charged test particle around Kerr-Taub-NUT gravitational source immersed in magnetic field with different values of external magnetic field and NUT parameter has been also investigated. In both cases presence of NUT parameter and magnetic field shifts stable circular orbits in the direction of the central gravitating object. Finally we find analytical solutions of Maxwell equations in the external background spacetime of a slowly rotating magnetized NUT star. The star is considered isolated and in vacuum, with monopolar configuration model for the stellar magnetic field.Comment: 18 pages, 6 figures, new results in section 2 added, section 3 is revised, 3 references are adde

    Geodesics of electrically and magnetically charged test particles in the Reissner-Nordstr\"om space-time: analytical solutions

    Full text link
    We present the full set of analytical solutions of the geodesic equations of charged test particles in the Reissner-Nordstr\"om space-time in terms of the Weierstra{\ss} \wp, σ\sigma and ζ\zeta elliptic functions. Based on the study of the polynomials in the ϑ\vartheta and rr equations we characterize the motion of test particles and discuss their properties. The motion of charged test particles in the Reissner-Nordstr\"om space-time is compared with the motion of neutral test particles in the field of a gravitomagnetic monopole. Electrically or magnetically charged particles in the Reissner-Nordstr\"om space-time with magnetic or electric charges, respectively, move on cones similar to neutral test particles in the Taub-NUT space-times

    Personalized medicine in the treatment of inflammatory bowel diseases

    Get PDF
    Personalized medicine (personalized medicine, individualized medicine) represents the totality of methods of prevention of a pathological condition, diagnosis and treatment in the event of its occurrence, based on individual patient characteristics. Such individual characteristics include genetic, epigenetic, and transcript, proteome, metabolomic and metagenomic markers, as well as a set of variable phenotypic traits - both of the patient's body and its separate tissues or cells. For example, treatment of inflammatory bowel diseases (IBD) can most clearly show the importance of applying personalized approaches. Currently in the treatment of patients with IBD paid great attention to genetic studies, monitoring of the concentration of the biological drugs and the level of antibodies to them, the role of microbiota as a predictor of effectiveness of therapy of IBD. Used clinical, laboratory, instrumental methods, as well as new biomarkers to assess the forecasting efficiency of conservative therapy in IBD patient. In the future treatment of patients with IBD will include a number of personalized data in order to better predict outcomes of the disease in each patient and more accurately select the appropriate treatment regimen
    corecore