4,803 research outputs found

    Influence of Cooper pairing on the inelastic processes in a gas of Fermi atoms

    Full text link
    Correlation properties in ultracold Fermi gas with negative scattering length and its impact on the three-body recombination is analyzed. We find that Cooper pairing enhances the recombination rate in contrast to the decrease of this rate accompanying Bose-Einstein condensation in a Bose gas. This trend is characteristic for all interval of temperatures T<Tc

    Motion of a condensate in a shaken and vibrating harmonic trap

    Full text link
    The dynamics of a Bose-Einstein condensate (BEC) in a time-dependent harmonic trapping potential is determined for arbitrary variations of the position of the center of the trap and its frequencies. The dynamics of the BEC wavepacket is soliton-like. The motion of the center of the wavepacket, and the spatially and temporally dependent phase (which affects the coherence properties of the BEC) multiplying the soliton-like part of the wavepacket, are analytically determined.Comment: Accepted for publication in J. Phys. B: At Mol Opt Phy

    Expansion of an interacting Fermi gas

    Full text link
    We study the expansion of a dilute ultracold sample of fermions initially trapped in a anisotropic harmonic trap. The expansion of the cloud provides valuable information about the state of the system and the role of interactions. In particular the time evolution of the deformation of the expanding cloud behaves quite differently depending on whether the system is in the normal or in the superfluid phase. For the superfluid phase, we predict an inversion of the deformation of the sample, similarly to what happens with Bose-Einstein condensates. Viceversa, in the normal phase, the inversion of the aspect ratio is never achieved, if the mean field interaction is attractive and collisions are negligible.Comment: 4 pages, 3 figures, final versio

    Measurement of positive and negative scattering lengths in a Fermi gas of atoms

    Full text link
    An exotic superfluid phase has been predicted for an ultracold gas of fermionic atoms. This phase requires strong attractive interactions in the gas, or correspondingly atoms with a large, negative s-wave scattering length. Here we report on progress toward realizing this predicted superfluid phase. We present measurements of both large positive and large negative scattering lengths in a quantum degenerate Fermi gas of atoms. Starting with a two-component gas that has been evaporatively cooled to quantum degeneracy, we create controllable, strong interactions between the atoms using a magnetic-field Feshbach resonance. We then employ a novel rf spectroscopy technique to directly measure the mean-field interaction energy, which is proportional to the s-wave scattering length. Near the peak of the resonance we observe a saturation of the interaction energy; it is in this strongly interacting regime that superfluidity is predicted to occur. We have also observed anisotropic expansion of the gas, which has recently been suggested as a signature of superfluidity. However, we find that this can be attributed to a purely collisional effect

    Bound states of three and four resonantly interacting particles

    Full text link
    We present an exact diagrammatic approach for the problem of dimer-dimer scattering in 3D for dimers being a resonant bound state of two fermions in a spin-singlet state, with corresponding scattering length aFa_F. Applying this approach to the calculation of the dimer-dimer scattering length aBa_B, we recover exactly the already known result aB=0.60aFa_B=0.60 a_F. We use the developed approach to obtain new results in 2D for fermions as well as for bosons. Namely, we calculate bound state energies for three bbbbbb and four bbbbbbbb resonantly interacting bosons in 2D. For the case of resonant interaction between fermions and bosons we calculate exactly bound state energies of the following complexes: two bosons plus one fermion bbfbbf, two bosons plus two fermions bf↑bf↓bf_{\uparrow}bf_{\downarrow}, and three bosons plus one fermion bbbfbbbf.Comment: 10 pages, 9 figure
    • …
    corecore