8,565 research outputs found

    Manifestation of superfluidity in an evolving Bose-condensed gas

    Full text link
    We study the generation of excitations due to an ''impurity''(static perturbation) placed into an oscillating Bose-condensed gas in the time-dependent trapping field. It is shown that there are two regions for the position of the local perturbation. In the first region the condensate flows around the ''impurity'' without generation of excitations demonstrating superfluid properties. In the second region the creation of excitations occurs, at least within a limited time interval, revealing destruction of superfluidity. The phenomenon can be studied by measuring the damping of condensate oscillations at different positions of the ''impurity''

    Collapse and Bose-Einstein condensation in a trapped Bose-gas with negative scattering length

    Full text link
    We find that the key features of the evolution and collapse of a trapped Bose condensate with negative scattering length are predetermined by the particle flux from the above-condensate cloud to the condensate and by 3-body recombination of Bose-condensed atoms. The collapse, starting once the number of Bose-condensed atoms reaches the critical value, ceases and turns to expansion when the density of the collapsing cloud becomes so high that the recombination losses dominate over attractive interparticle interaction. As a result, we obtain a sequence of collapses, each of them followed by dynamic oscillations of the condensate. In every collapse the 3-body recombination burns only a part of the condensate, and the number of Bose-condensed atoms always remains finite. However, it can comparatively slowly decrease after the collapse, due to the transfer of the condensate particles to the above-condensate cloud in the course of damping of the condensate oscillations.Comment: 11 pages, 3 figure

    Measurement of positive and negative scattering lengths in a Fermi gas of atoms

    Full text link
    An exotic superfluid phase has been predicted for an ultracold gas of fermionic atoms. This phase requires strong attractive interactions in the gas, or correspondingly atoms with a large, negative s-wave scattering length. Here we report on progress toward realizing this predicted superfluid phase. We present measurements of both large positive and large negative scattering lengths in a quantum degenerate Fermi gas of atoms. Starting with a two-component gas that has been evaporatively cooled to quantum degeneracy, we create controllable, strong interactions between the atoms using a magnetic-field Feshbach resonance. We then employ a novel rf spectroscopy technique to directly measure the mean-field interaction energy, which is proportional to the s-wave scattering length. Near the peak of the resonance we observe a saturation of the interaction energy; it is in this strongly interacting regime that superfluidity is predicted to occur. We have also observed anisotropic expansion of the gas, which has recently been suggested as a signature of superfluidity. However, we find that this can be attributed to a purely collisional effect

    Zero-Temperature Structures of Atomic Metallic Hydrogen

    Full text link
    Ab initio random structure searching with density functional theory was used to determine the zero-temperature structures of atomic metallic hydrogen from 500 GPa to 5 TPa. Including zero point motion in the harmonic approximation, we estimate that molecular hydrogen dissociates into a monatomic body-centered tetragonal structure near 500 GPa (r_s = 1.225), which then remains stable to 2.5 TPa (r_s = 0.969). At higher pressures, hydrogen stabilizes in an ...ABCABC... planar structure that is remarkably similar to the ground state of lithium, which compresses to the face-centered cubic lattice beyond 5 TPa (r_s < 0.86). At this level of theory, our results provide a complete ab initio description of the atomic metallic structures of hydrogen, resolving one of the most fundamental and long outstanding issues concerning the structures of the elements.Comment: 9 pages; 4 figure

    Small-scale phase separation in doped anisotropic antiferromagnets

    Full text link
    We analyze the possibility of the nanoscale phase separation manifesting itself in the formation of ferromagnetic (FM) polarons (FM droplets) in the general situation of doped anisotropic three- and two-dimensional antiferromagnets. In these cases, we calculate the shape of the most energetically favorable droplets. We show that the binding energy and the volume of a FM droplet in the three-dimensional (3D) case depend only upon two universal parameters Jˉ=(Jx+Jy+Jz)S2\bar{J} =(J_x + J_y + J_z)S^2 and teff=(txtytz)1/3t_{eff} =(t_xt_yt_z)^{1/3}, where Jˉ\bar{J} and tefft_{eff} are effective antiferromagnetic (AFM) exchange and hopping integrals, respectively. In the two-dimensional (2D) case, these parameters have the form Jˉ=(Jx+Jy)S2\bar{J} =(J_x + J_y)S^2 and teff=(txty)1/2t_{eff} =(t_xt_y)^{1/2}. The most favorable shape of a ferromagnetic droplet corresponds to an ellipse in the 2D case and to an ellipsoid in the 3D case.Comment: 6 pages, 1 figure, RevTe

    Evolution of a Bose-condensed gas under variations of the confining potential

    Get PDF
    We discuss the dynamic properties of a trapped Bose-condensed gas under variations of the confining field and find analytical scaling solutions for the evolving coherent state (condensate). We further discuss the characteristic features and the depletion of this coherent state.Comment: 4 pages, no postscript figure
    • …
    corecore