7 research outputs found

    Solid Waste and Water Quality Management Models for Sagarmatha National Park and Buffer Zone, Nepal Implementation of a Participatory Modeling Framework

    Full text link
    The problem of supporting decision-and policy-makers in managing issues related to solid waste and water quality was addressed within the context of a participatory modeling framework in the Sagarmatha National Park and Buffer Zone in Nepal. We present the main findings of management-oriented research projects conducted within this framework, thus providing an overview of the current situation in the park regarding solid waste and water quality issues. We found that most of the solid waste generated in the park is composed of organic matter, paper, and minor reused waste that is mainly reused for cattle feeding and manure, while disposal of other nondegradable categories of collected waste (glass, metal, and plastic) is not properly managed. Particularly, burning or disposal in open dumps poses a great hazard to environmental, human, and animal health, as most dump sites situated close to water courses are prone to regular flooding during the rainy season, thereby directly contaminating river water. Pollutants and microbiological contamination in water bodies were found and anthropogenic activities and hazardous practices such as solid waste dump sites, open defecation, and poor conditions of existing septic tanks are suggested as possibly affecting water quality. Collection of these data on solid waste and water quality and compilation of management information on the targeted social-ecological system allowed us to develop consensus-building models to be used as management supporting tools. By implementing such models, we were able to simulate scenarios identifying and evaluating possible management solutions and interventions in the park. This work reveals insights into general dynamics that can support the quest for solutions to waste and water quality management problems in other protected areas and mountain landscapes where traditional livelihood and land use patterns are changing under the influence of a growing population, changing consumption patterns, and international tourism

    Multidrug-resistant and extended-spectrum beta-lactamase-producing uropathogens in children in Bhaktapur, Nepal

    Get PDF
    Background: The emergence of multidrug-resistant (MDR) and extended-spectrum beta-lactamase (ESBL)-producing uropathogens has ]complicated the treatment of urinary tract infections (UTI). Paediatric UTI is a common illness, which if not treated properly, may lead to acute and long-term complications, such as renal abscess, septicaemia, and renal scarring. This study aimed to determine the prevalence of MDR and ESBL-producing uropathogens among children. Methods: During the study period (April 2017-April 2018), midstream urine samples were collected following aseptic procedures from children < 16 years in Siddhi Memorial Hospital. Standard culture and biochemical tests were performed to identify uropathogens and antimicrobial susceptibility test was done by modified Kirby-Bauer disc diffusion method following Clinical and Laboratory Standard Institute (CLSI) guidelines. ESBL-producing uropathogens were screened by ceftazidime (30 μg) and cefotaxime (30 μg) discs, and confirmed by the combination disc tests: ceftazidime + clavulanic acid (30/10 μg) or cefotaxime + clavulanic acid (30/10 μg) as recommended by CLSI. Results: We processed 5545 non-repeated urine samples from the children with symptoms of UTI. A significant growth of uropathogens was observed in 203 samples (3.7%). The median age of the children was 24 months (interquartile range (IQR), 12-53 months). Escherichia coli (n = 158, 77.8%) and Klebsiella pneumoniae (n = 30, 14.8%) were common among the uropathogens. Among them, 80.3% were resistant to amoxycillin and 51.2% were resistant to cotrimoxazole. Most of them were susceptible to amikacin,nitrofurantoin, and ofloxacin. MDR was detected in 34.5% (n = 70/203) and ESBL producers in 24.6% (n = 50/203) of them. The proportion of MDR isolates was higher in children < 5 years (n = 59/153, 38.6%) than children ? 5 years (n = 11/50, 22%) (P = 0.03). Conclusions:Nitrofurantoin, ofloxacin, and amikacin can be used for the empirical treatment for UTI in children in Bhaktapur, Nepal.MDR and ESBL-producing uropathogens are prevalent; this warrants a continuous surveillance of antimicrobial resistance
    corecore