9 research outputs found

    Recruiting the Host\u27s Immune System to Target Helicobacter pylori\u27s Surface Glycans

    Get PDF
    Due to the increased prevalence of bacterial strains that are resistant to existing antibiotics, there is an urgent need for new antibacterial strategies. Bacterial glycans are an attractive target for new treatments, as they are frequently linked to pathogenesis and contain distinctive structures that are absent in humans. We set out to develop a novel targeting strategy based on surface glycans present on the gastric pathogen Helicobacter pylori (Hp). In this study, metabolic labeling of bacterial glycans with an azide-containing sugar allowed selective delivery of immune stimulants to azide-covered Hp. We established that Hp\u27s surface glycans are labeled by treatment with the metabolic substrate peracetylated N-azidoacetylglucosamine (Ac4GlcNAz). By contrast, mammalian cells treated with Ac4GlcNAz exhibited no incorporation of the chemical label within extracellular glycans. We further demonstrated that the Staudinger ligation between azides and phosphines proceeds under acidic conditions with only a small loss of efficiency. We then targeted azide-covered Hp with phosphines conjugated to the immune stimulant 2,4-dinitrophenyl (DNP), a compound capable of directing a host immune response against these cells. Finally, we report that immune effector cells catalyze selective damage in vitro to DNP-covered Hp in the presence of anti-DNP antibodies. The technology reported herein represents a novel strategy to target Hp based on its glycans. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Comparative Metabolite Extraction Protocols from Breast Cancer Mouse Lung Tissue for LC-MS/MS Analysis

    Get PDF
    Triple-negative breast cancer (TNBC) stands out for its heightened invasiveness, leading to distant metastasis in nearly 46% of cases, with common targets being the brain, lungs, and bones. This subtype is associated with significantly shorter median survival compared to other breast cancer types. Analyzing metabolic compounds in lung tissues affected by breast cancer metastasis provides valuable insights into biological information and regulatory processes. Despite the recognized severity of TNBC spreading to other sites, there are limited reported studies investigating metabolome information in distant organ tissues, particularly the lungs. Therefore, accurately quantifying the abundance of metabolites requires careful extraction procedures. This study aims to investigate and compare extraction protocols for lung tissue metabolites in TNBC mice using liquid chromatography with tandem mass spectrometry (LC-MS/MS). Left lung tissues were collected from mice xenografted with breast cancer. Three different extraction methods were evaluated to assess their metabolite coverage and biochemical compound classes. Our findings revealed distinct differences in metabolite compositions among the three methods. The extraction solvent comprising isopropanol, acetonitrile, and water in a 3:2:2 ratio proved most suitable for studying breast cancer metastasis to lung tissues. This extraction solvent could serve as a protocol for future studies analyzing the lung cancer metabolome in mice

    Spatially-resolved transcriptomic mapping in live cells using peroxidase-mediated proximity biotinylation

    No full text
    Thesis: Ph. D., Massachusetts Institute of Technology, Department of Chemistry, 2017.Cataloged from PDF version of thesis.Includes bibliographical references.The spatial organization of RNA within cells is crucial for the regulation of a wide range of biological functions, spanning all kingdoms of life. However, a general understanding of RNA localization has been hindered by a lack of simple, high-throughput methods for mapping the transcriptomes of subcellular compartments. Here, we developed two methods, termed APEX-RIP and APEX-Seq. APEX-RIP combines peroxidase-catalyzed, spatially restricted in situ protein biotinylation with RNA-protein chemical crosslinking, while APEX-Seq utilizes peroxidase-catalyzed in situ biotinylation on RNA. We demonstrated that APEX-RIP can isolate RNAs from a variety of subcellular compartments, including the mitochondrial matrix, nucleus, bulk cytosol, and endoplasmic reticulum (ER) membrane, with higher specificity and coverage than conventional approaches. We furthermore identified candidate RNAs localized to mitochondria-ER junctions and nuclear lamina, two compartments that are recalcitrant to classical biochemical purification. Similarly, APEX-Seq can isolate RNAs from mitochondrial matrix, ER-associated RNAs, OMM-associated RNAs, and potentially other non-membrane bound compartments. We also revealed many non-coding RNA candidates at these sites. Since APEX-RIP and APEX-Seq are simple, versatile, and do not require special instrumentation, we envision their broad applications in a variety of biological contexts.by Pornchai Kaewsapsak.Ph. D

    In Silico Evaluation of CRISPR-Based Assays for Effective Detection of SARS-CoV-2

    No full text
    Coronavirus disease (COVID-19) caused by the SARS-CoV-2 has been an outbreak since late 2019 up to now. This pandemic causes rapid development in molecular detection technologies to diagnose viral infection for epidemic prevention. In addition to antigen test kit (ATK) and polymerase chain reaction (PCR), CRISPR-based assays for detection of SARS-CoV-2 have gained attention because it has a simple setup but still maintain high specificity and sensitivity. However, the SARS-CoV-2 has been continuing mutating over the past few years. Thus, molecular tools that rely on matching at the nucleotide level need to be reevaluated to preserve their specificity and sensitivity. Here, we analyzed how mutations in different variants of concern (VOC), including Alpha, Beta, Gamma, Delta, and Omicron strains, could introduce mismatches to the previously reported primers and crRNAs used in the CRISPR-Cas system. Over 40% of the primer sets and 15% of the crRNAs contain mismatches. Hence, primers and crRNAs in nucleic acid-based assays must be chosen carefully to pair up with SARS-CoV-2 variants. In conclusion, the data obtained from this study could be useful in selecting the conserved primers and crRNAs for effective detections against the VOC of SARS-CoV-2

    Live-cell mapping of organelle-associated RNAs via proximity biotinylation combined with protein-RNA crosslinking

    No full text
    The spatial organization of RNA within cells is a crucial factor influencing a wide range of biological functions throughout all kingdoms of life. However, a general understanding of RNA localization has been hindered by a lack of simple, high-throughput methods for mapping the transcriptomes of subcellular compartments. Here, we develop such a method, termed APEX-RIP, which combines peroxidase-catalyzed, spatially restricted in situ protein biotinylation with RNA-protein chemical crosslinking. We demonstrate that, using a single protocol, APEX-RIP can isolate RNAs from a variety of subcellular compartments, including the mitochondrial matrix, nucleus, cytosol, and endoplasmic reticulum (ER), with specificity and sensitivity that rival or exceed those of conventional approaches. We further identify candidate RNAs localized to mitochondria-ER junctions and nuclear lamina, two compartments that are recalcitrant to classical biochemical purification. Since APEX-RIP is simple, versatile, and does not require special instrumentation, we envision its broad application in a variety of biological contexts

    MicroRNA-223 Suppresses Human Hepatic Stellate Cell Activation Partly via Regulating the Actin Cytoskeleton and Alleviates Fibrosis in Organoid Models of Liver Injury

    No full text
    MicroRNAs (miRNAs) are small, non-coding RNAs that negatively regulate target mRNA expression, and altered expression of miRNAs is associated with liver pathological conditions. Recent studies in animal models have shown neutrophil/myeloid-specific microRNA-223 (miR-223) as a key regulator in the development of various liver diseases including fibrosis, where hepatic stellate cells (HSCs) are the key player in pathogenesis. However, the precise roles of miR-223 in human HSCs and its therapeutic potential to control fibrosis remain largely unexplored. Using primary human HSCs, we demonstrated that miR-223 suppressed the fibrogenic program and cellular proliferation while promoting features of quiescent HSCs including lipid re-accumulation and retinol storage. Furthermore, induction of miR-223 in HSCs decreased cellular motility and contraction. Mechanistically, miR-223 negatively regulated expression of smooth muscle α-actin (α-SMA) and thus reduced cytoskeletal activity, which is known to promote amplification of fibrogenic signals. Restoration of α-SMA in miR-223-overexpressing HSCs alleviated the antifibrotic effects of miR-223. Finally, to explore the therapeutic potential of miR-233 in liver fibrosis, we generated co-cultured organoids of HSCs with Huh7 hepatoma cells and challenged them with acetaminophen (APAP) or palmitic acid (PA) to induce hepatotoxicity. We showed that ectopic expression of miR-223 in HSCs attenuated fibrogenesis in the two human organoid models of liver injury, suggesting its potential application in antifibrotic therapy

    A sensitive and specific fluorescent RT-LAMP assay for SARS-CoV‑2 detection in clinical samples

    No full text
    The raging COVID-19 pandemic has created an unprecedented demand for frequent and widespread testing to limit viral transmission. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) has emerged as a promising diagnostic platform for rapid detection of SARS-CoV-2, in part because it can be performed with simple instrumentation. However, isothermal amplification methods frequently yield spurious amplicons even in the absence of a template. Consequently, RT-LAMP assays can produce false positive results when they are based on generic intercalating dyes or pH-sensitive indicators. Here, we report the development of a sensitive RT-LAMP assay that leverages on a novel sequence-specific probe to guard against spurious amplicons. We show that our optimized fluorescent assay, termed LANTERN, takes only 30 min to complete and can be applied directly on swab or saliva samples. Furthermore, utilizing clinical RNA samples from 52 patients with COVID-19 infection and 21 healthy individuals, we demonstrate that our diagnostic test exhibits a specificity and positive predictive value of 95% with a sensitivity of 8 copies per reaction. Hence, our new probe-based RT-LAMP assay can serve as an inexpensive method for point-of-need diagnosis of COVID-19 and other infectious diseases.Agency for Science, Technology and Research (A*STAR)Ministry of Education (MOE)Nanyang Technological UniversityThis work is supported by a Ministry of Education Academic Research Fund Tier 1 Grant (2017-T1-001-214 to M.H.T.), a Gap Fund from Ministry of Education (NGF-2020-08-015 to M.H.T.), a Gap Fund from A*STAR (ACCL/19-GAP064-R20H-N to M.H.T.), and a NTU Research Scholarship (to M.M.L.)

    Direct identification of A-to-I editing sites with nanopore native RNA sequencing

    No full text
    Inosine is a prevalent RNA modification in animals and is formed when an adenosine is deaminated by the ADAR family of enzymes. Traditionally, inosines are identified indirectly as variants from Illumina RNA-sequencing data because they are interpreted as guanosines by cellular machineries. However, this indirect method performs poorly in protein-coding regions where exons are typically short, in non-model organisms with sparsely annotated single-nucleotide polymorphisms, or in disease contexts where unknown DNA mutations are pervasive. Here, we show that Oxford Nanopore direct RNA sequencing can be used to identify inosine-containing sites in native transcriptomes with high accuracy. We trained convolutional neural network models to distinguish inosine from adenosine and guanosine, and to estimate the modification rate at each editing site. Furthermore, we demonstrated their utility on the transcriptomes of human, mouse and Xenopus. Our approach expands the toolkit for studying adenosine-to-inosine editing and can be further extended to investigate other RNA modifications
    corecore