2,598 research outputs found

    Josephson Plasma Resonance in Solid and Glass Phases of Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}

    Full text link
    Vortex matter phases and phase transitions are investigated by means of Josephson plasma resonance in under-doped Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} single crystals in a microwave frequency range between 19 and 70 GHz. Accompanied by the vortex lattice melting transition, a jump of the interlayer phase coherence extracted from the field dependence of the plasma frequency was observed. In the solid phase, the interlayer coherence little depends on field at a temperature region well below TcT_c while it gradually decreases as field increases toward the melting line up to just below TcT_c. As a result, the magnitude of the jump decreases with increasing temperature and is gradually lost in the vicinity of TcT_c. This indicates that the vortex lines formed in the vortex solid phase are thermally meandering and the phase transition becomes weak especially just below TcT_c.Comment: 5pages and 4 figures. Submitted to Physica C (Proceedings of Plasma2000, Sendai

    Two Phase Collective Modes in Josephson Vortex Lattice in Intrinsic Josephson Junction Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}

    Get PDF
    Josephson plasma excitations in the high TcT_c superconductor Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} have been investigated in a wide microwave frequency region (9.8 -- 75 GHz), in particular, in magnetic field applied parallel to the abab plane of the single crystal. In sharp contrast to the case for magnetic fields parallel to the c axis or tilted from the abab plane, it was found that there are two kinds of resonance modes, which are split in energy and possess two distinctly different magnetic field dependences. One always lies higher in energy than the other and has a shallow minimum at about 0.8 kOe, then increases linearly with magnetic field. On the other hand, another mode begins to appear only in a magnetic field (from a few kOe and higher) and has a weakly decreasing tendency with increasing magnetic field. By comparing with a recent theoretical model the higher energy mode can naturally be attributed to the Josephson plasma resonance mode propagating along the primitive reciprocal lattice vector of the Josephson vortex lattice, whereas the lower frequency mode is assigned to the novel phase collective mode of the Josephson vortex lattice, which has never been observed before.Comment: 11 pages and 10 figure

    Superconducting Plasma Excitation at Microwave Frequencies in Parallel Magnetic Fields in Bi2Sr2CaCu2O8+δ\mathrm{\mathbf{Bi_2Sr_2CaCu_2O_{8+\delta}}}

    Full text link
    Josephson plasma resonance has been studied in a wide microwave frequency range between 10 and 52 GHz in a magnetic field parallel to the abab-plane in under-doped \BI. Above about 30 GHz two resonance modes were observed: one (LT mode) appears at low temperatures and another (HT mode) at higher temperatures, leaving a temperature gap between two regions. These two resonance modes exhibit a sharp contrast each other both on temperture and magnetic field dependences and show distinct characters different entirely from the c-axis Josephson plasma resonance. From temperature and field scan experiments at various frequencies it is suggested that the LT mode can be attributed to the coupled Josephson plasma mode with Josephson vortices, while the HT mode is a new plasma mode associated possibly with the periodic array of Josephson vortices.Comment: submitted to Physica C (Prceedings of Plasma2000, Sendai

    Thermodynamic properties of quadrupolar states in the frustrated pyrochlore magnet Tb2_2Ti2_2O7_7

    Get PDF
    The low-temperature thermodynamic properties of the frustrated pyrochlore Tb2+x_{2+x}Ti2x_{2-x}O7+y_{7+y} have been studied using the single crystal of x=0.005x=0.005 sitting in a long range ordered phase in the xx-TT phase diagram. We observed that the specific heat exhibits a minimum around 2 K and slightly increases on cooling, similar to a Schottky-like anomaly for canonical spin ices. A clear specific-heat peak observed at Tc=0.53T_{\rm c} = 0.53 K is ascribable to the phase transition to a quadrupolar state, which contributes to a relatively large change in entropy, S2.7S \simeq 2.7 J K1^{-1}mol1^{-1}. However, it is still smaller than Rln2R\ln2 for the ground state doublet of the Tb ions. The entropy release persists to higher temperatures, suggesting strong fluctuations associated with spin ice correlations above TcT_{\rm c}. We discuss the field dependence of the entropy change for H[111]H||[111] and H[001]H||[001].Comment: 6 pages, 2 figure
    corecore