50 research outputs found

    Mitochondrial dysfunction and increased reactive oxygen species impair insulin secretion in sphingomyelin synthase 1-null Mice

    Full text link
    Sphingomyelin synthase 1 (SMS1) catalyzes the conversion of ceramide to sphingomyelin. Here, we generated and analyzed SMS1-null mice. SMS1-null mice exhibited moderate neonatal lethality, reduced body weight, and loss of fat tissues mass, suggesting that they might have metabolic abnormality. Indeed, analysis on glucose metabolism revealed that they showed severe deficiencies in insulin secretion. Isolated mutant islets exhibited severely impaired ability to release insulin, dependent on glucose stimuli. Further analysis indicated that mitochondria in mutant islet cells cannot up-regulate ATP production in response to glucose. We also observed additional mitochondrial abnormalities, such as hyperpolarized membrane potential and increased levels of reactive oxygen species (ROS) in mutant islets. Finally, when SMS1-null mice were treated with the anti-oxidant N-acetyl cysteine, we observed partial recovery of insulin secretion, indicating that ROS overproduction underlies pancreatic β-cell dysfunction in SMS1-null mice. Altogether, our data suggest that SMS1 is important for controlling ROS generation, and that SMS1 is required for normal mitochondrial function and insulin secretion in pancreatic β-cells.Masato Yano, Ken Watanabe, Tadashi Yamamoto, Kazutaka Ikeda, Takafumi Senokuchi, Meihong Lu, Tsuyoshi Kadomatsu, Hiroto Tsukano, Masahito Ikawa, Masaru Okabe, Shohei Yamaoka, Toshiro Okazaki, Hisanori Umehara, Tomomi Gotoh, Wen-Jie Song, Koichi Node, Ryo Taguchi, Kazuya Yamagata, Yuichi Oike, Mitochondrial Dysfunction and Increased Reactive Oxygen Species Impair Insulin Secretion in Sphingomyelin Synthase 1-null Mice, Journal of Biological Chemistry, Volume 286, Issue 5, 2011, Pages 3992-4002, ISSN 0021-9258, https://doi.org/10.1074/jbc.M110.179176

    ABCA1 gene-physical activity interaction for HDL-C

    Get PDF
    Few studies have investigated the interactions between HDL-C-related SNPs identified by genome-wide association (GWA) study and physical activity (PA) on HDL-C. First, we conducted a sex-stratified GWA study in a discovery sample (2,231 men and 2,431 women) and replication sample (2,599 men and 3,109 women) to identify SNPs influencing log-transformed HDL-C in Japanese participants in the baseline survey of the Japan Multi-Institutional Collaborative Cohort Study. We also replicated previously reported HDL-C-related SNPs in a combined (discovery plus replication) sample (4,830 men and 5,540 women). We then analyzed the interactions of the HDL-C-related SNPs with PA on HDL-C. The sex-stratified GWA analyses identified 11 and 10 HDL-C-related SNPs in men and women as targets for an interaction analysis. Among these, only one interaction of ABCA1 rs1883025 with PA was statistically significant in men, after Bonferroni correction [P-interaction = 0.001 (α = 0.05/21 = 0.002)]. The per-major-allele (C allele) increase in log-transformed HDL-C was lost in men with low PA (β = 0.008) compared with those with medium (β = 0.032) or high PA (β = 0.034). These findings suggest that the benefit of carrying a C allele of ABCA1 rs1883025 on enhancing HDL-C may be attenuated in inactive men

    Upregulation of ANGPTL6 in mouse keratinocytes enhances susceptibility to psoriasis

    Get PDF
    Psoriasis is a chronic inflammatory skin disease marked by aberrant tissue repair. Mutant mice modeling psoriasis skin characteristics have provided useful information relevant to molecular mechanisms and could serve to evaluate therapeutic strategies. Here, we found that epidermal ANGPTL6 expression was markedly induced during tissue repair in mice. Analysis of mice overexpressing ANGPTL6 in keratinocytes (K14-Angptl6 Tg mice) revealed that epidermal ANGPTL6 activity promotes aberrant epidermal barrier function due to hyperproliferation of prematurely differentiated keratinocytes. Moreover, skin tissues of K14-Angptl6 Tg mice showed aberrantly activated skin tissue inflammation seen in psoriasis. Levels of the proteins S100A9, recently proposed as therapeutic targets for psoriasis, also increased in skin tissue of K14-Angptl6 Tg mice, but psoriasis-like inflammatory phenotypes in those mice were not rescued by S100A9 deletion. This finding suggests that decreasing S100A9 levels may not ameliorate all cases of psoriasis and that diverse mechanisms underlie the condition. Finally, we observed enhanced levels of epidermal ANGPTL6 in tissue specimens from some psoriasis patients. We conclude that the K14-Angptl6 Tg mouse is useful to investigate psoriasis pathogenesis and for preclinical testing of new therapeutics. Our study also suggests that ANGPTL6 activation in keratinocytes enhances psoriasis susceptibility

    The role of ANGPTL2-induced chronic inflammation in lifestyle diseases and cancer

    No full text

    A type I DnaJ homolog, DjA1, regulates androgen receptor signaling and spermatogenesis

    Get PDF
    Two type I DnaJ homologs DjA1 (DNAJA1; dj2, HSDJ/hdj-2, rdj1) and DjA2 (DNAJA2; dj3, rdj2) work similarly as a cochaperone of Hsp70s in protein folding and mitochondrial protein import in vitro. To study the in vivo role of DjA1, we generated DjA1-mutant mice. Surprisingly, loss of DjA1 in mice led to severe defects in spermatogenesis that involve aberrant androgen signaling. Transplantation experiments with green fluorescent protein-labeled spermatogonia into DjA1(−/−) mice revealed a primary defect of Sertoli cells in maintaining spermiogenesis at steps 8 and 9. In Sertoli cells of DjA1(−/−) mice, the androgen receptor markedly accumulated with enhanced transcription of several androgen-responsive genes, including Pem and testin. Disruption of Sertoli–germ cell adherens junctions was also evident in DjA1(−/−) mice. Experiments with DjA1(−/−) fibroblasts and primary Sertoli cells indicated aberrant androgen receptor signaling. These results revealed a critical role of DjA1 in spermiogenesis and suggest that DjA1 and DjA2 are not functionally equivalent in vivo

    ANGPTL2 promotes immune checkpoint inhibitor-related murine autoimmune myocarditis

    No full text
    Abstract Use of immune checkpoint inhibitors (ICIs) as cancer immunotherapy advances rapidly in the clinic. Despite their therapeutic benefits, ICIs can cause clinically significant immune-related adverse events (irAEs), including myocarditis. However, the cellular and molecular mechanisms regulating irAE remain unclear. Here, we investigate the function of Angiopoietin-like protein 2 (ANGPTL2), a potential inflammatory mediator, in a mouse model of ICI-related autoimmune myocarditis. ANGPTL2 deficiency attenuates autoimmune inflammation in these mice, an outcome associated with decreased numbers of T cells and macrophages. We also show that cardiac fibroblasts express abundant ANGPTL2. Importantly, cardiac myofibroblast-derived ANGPTL2 enhances expression of chemoattractants via the NF-κB pathway, accelerating T cell recruitment into heart tissues. Our findings suggest an immunostimulatory function for ANGPTL2 in the context of ICI-related autoimmune inflammation and highlight the pathophysiological significance of ANGPTL2-mediated cardiac myofibroblast/immune cell crosstalk in enhancing autoimmune responses. These findings overall provide insight into mechanisms regulating irAEs

    Aging- and obesity-related peri-muscular adipose tissue accelerates muscle atrophy.

    No full text
    Sarcopenia due to loss of skeletal muscle mass and strength leads to physical inactivity and decreased quality of life. The number of individuals with sarcopenia is rapidly increasing as the number of older people increases worldwide, making this condition a medical and social problem. Some patients with sarcopenia exhibit accumulation of peri-muscular adipose tissue (PMAT) as ectopic fat deposition surrounding atrophied muscle. However, an association of PMAT with muscle atrophy has not been demonstrated. Here, we show that PMAT is associated with muscle atrophy in aged mice and that atrophy severity increases in parallel with cumulative doses of PMAT. We observed severe muscle atrophy in two different obese model mice harboring significant PMAT relative to respective control non-obese mice. We also report that denervation-induced muscle atrophy was accelerated in non-obese young mice transplanted around skeletal muscle with obese adipose tissue relative to controls transplanted with non-obese adipose tissue. Notably, transplantation of obese adipose tissue into peri-muscular regions increased nuclear translocation of FoxO transcription factors and upregulated expression FoxO targets associated with proteolysis (Atrogin1 and MuRF1) and cellular senescence (p19 and p21) in muscle. Conversely, in obese mice, PMAT removal attenuated denervation-induced muscle atrophy and suppressed upregulation of genes related to proteolysis and cellular senescence in muscle. We conclude that PMAT accumulation accelerates age- and obesity-induced muscle atrophy by increasing proteolysis and cellular senescence in muscle
    corecore