318 research outputs found

    Electronic and magnetic properties of the monolayer RuCl3_3: A first-principles and Monte Carlo study

    Full text link
    Recent experiments revealed that monolayer α\alpha-RuCl3_3 can be obtain by chemical exfoliation method and exfoliation or restacking of nanosheets can manipulate the magnetic properties of the materials. In this present paper, the electronic and magnetic properties of α\alpha-RuCl3_3 monolayer are investigated by combining first-principles calculations and Monte Carlo simulations. From first-principles calculations, we found that the spin configuration FM corresponds to the ground state for α\alpha-RuCl3_3, however, the other excited zigzag oriented spin configuration has energy of 5 meV/atom higher than the ground state. Energy band gap has been obtained as 33 meV using PBE functionals. When spin-orbit coupling effect is taken into account, corresponding energy gap is determined to be as 5757 meV. We also investigate the effect of Hubbard U energy terms on the electronic band structure of α\alpha-RuCl3_3 monolayer and revealed band gap increases approximately linear with increasing U value. Moreover, spin-spin coupling terms (J1J_1, J2J_2, J3J_3) have been obtained using first principles calculations. By benefiting from these terms, Monte Carlo simulations with single site update Metropolis algorithm have been implemented to elucidate magnetic properties of the considered system. Thermal variations of magnetization, susceptibility and also specific heat curves indicate that monolayer α\alpha-RuCl3_3 exhibits a phase transition between ordered and disordered phases at the Curie temperature 14.2114.21 K. We believe that this study can be utilized to improve two-dimensional magnet materials

    All-Speed Methods and Long-Duration Time Integration for Incorporation into the 7-Equation Two-Phase Model

    Get PDF
    The numerical simulation of multiphase flows in Light Water (Nuclear) Reactors, LWRs, for normal, accident, and off-normal operation, and for operational optimization must cover a huge disparity of transient time durations, from milliseconds to years. In addition, our recent work has shown that the application of classical Riemann approaches, which pervade modern computational fluid dynamics (CFD), suffer numerical accuracy degradation, especially for compressible liquid flows. In this setting, all-speed or Mach uniform methods are need which can be accurately and efficiently integrated over a very large range of time scales. Thus we need a multi-time-scale integration approach to compliment our previously documented multi-spatial-scale approach to multiphase flow modeling [1]. This report briefly summarizes our efforts in these areas

    Modification of electronic structure, magnetic structure, and topological phase of bismuthene by point defects

    Get PDF
    This paper reveals how the electronic structure, magnetic structure, and topological phase of two-dimensional (2D), single-layer structures of bismuth are modified by point defects. We first showed that a free-standing, single-layer, hexagonal structure of bismuth, named h-bismuthene, exhibits nontrivial band topology. We then investigated interactions between single foreign adatoms and bismuthene structures, which comprise stability, bonding, electronic structure, and magnetic structures. Localized states in diverse locations of the band gap and resonant states in band continua of bismuthene are induced upon the adsorption of different adatoms, which modify electronic and magnetic properties. Specific adatoms result in reconstruction around the adsorption site. Single vacancies and divacancies can form readily in bismuthene structures and remain stable at high temperatures. Through rebondings, Stone-Whales-type defects are constructed by divacancies, which transform into a large hole at high temperature. Like adsorbed adatoms, vacancies induce also localized gap states, which can be eliminated through rebondings in divacancies. We also showed that not only the optical and magnetic properties, but also the topological features of pristine h-bismuthene can be modified by point defects. The modification of the topological features depends on the energies of localized states and also on the strength of coupling between point defects. © 2017 American Physical Society

    T Regulatory Cells Control Susceptibility to Invasive Pneumococcal Pneumonia in Mice

    Get PDF
    Streptococcus pneumoniae is an important human pathogen responsible for a spectrum of diseases including pneumonia. Immunological and pro-inflammatory processes induced in the lung during pneumococcal infection are well documented, but little is known about the role played by immunoregulatory cells and cytokines in the control of such responses. We demonstrate considerable differences in the immunomodulatory cytokine transforming growth factor (TGF)-β between the pneumococcal pneumonia resistant BALB/c and susceptible CBA/Ca mouse strains. Immunohistochemistry and flow cytometry reveal higher levels of TGF-β protein in BALB/c lungs during pneumococcal pneumonia that correlates with a rapid rise in lung Foxp3+Helios+ T regulatory cells. These cells have protective functions during pneumococcal pneumonia, because blocking their induction with an inhibitor of TGF-β impairs BALB/c resistance to infection and aids bacterial dissemination from lungs. Conversely, adoptive transfer of T regulatory cells to CBA/Ca mice, prior to infection, prolongs survival and decreases bacterial dissemination from lungs to blood. Importantly, strong T regulatory cell responses also correlate with disease-resistance in outbred MF1 mice, confirming the importance of immunoregulatory cells in controlling protective responses to the pneumococcus. This study provides exciting new evidence for the importance of immunomodulation during pulmonary pneumococcal infection and suggests that TGF-β signalling is a potential target for immunotherapy or drug design
    • …
    corecore