54 research outputs found

    The influence of canalization on the robustness of finite dynamical systems

    Get PDF

    Topology and Dynamics of Gene Regulatory Networks: A Meta-analysis

    Get PDF

    Canalization and other design principles of gene regulatory networks

    Get PDF

    Modularity in Gene Regulatory Networks

    Get PDF

    Collectively canalizing Boolean functions

    Full text link
    This paper studies the mathematical properties of collectively canalizing Boolean functions, a class of functions that has arisen from applications in systems biology. Boolean networks are an increasingly popular modeling framework for regulatory networks, and the class of functions studied here captures a key feature of biological network dynamics, namely that a subset of one or more variables, under certain conditions, can dominate the value of a Boolean function, to the exclusion of all others. These functions have rich mathematical properties to be explored. The paper shows how the number and type of such sets influence a function's behavior and define a new measure for the canalizing strength of any Boolean function. We further connect the concept of collective canalization with the well-studied concept of the average sensitivity of a Boolean function. The relationship between Boolean functions and the dynamics of the networks they form is important in a wide range of applications beyond biology, such as computer science, and has been studied with statistical and simulation-based methods. But the rich relationship between structure and dynamics remains largely unexplored, and this paper is intended as a contribution to its mathematical foundation.Comment: 15 pages, 2 figure

    Revealing the canalizing structure of Boolean functions: Algorithms and applications

    Full text link
    Boolean functions can be represented in many ways including logical forms, truth tables, and polynomials. Additionally, Boolean functions have different canonical representations such as minimal disjunctive normal forms. Other canonical representation is based on the polynomial representation of Boolean functions where they can be written as a nested product of canalizing layers and a polynomial that contains the noncanalizing variables. In this paper we study the problem of identifying the canalizing layers format of Boolean functions. First, we show that the problem of finding the canalizing layers is NP-hard. Second, we present several algorithms for finding the canalizing layers of a Boolean function, discuss their complexities, and compare their performances. Third, we show applications where the computation of canalizing layers can be used for finding a disjunctive normal form of a nested canalizing function. Another application deals with the reverse engineering of Boolean networks with a prescribed layering format. Finally, implementations of our algorithms in Python and in the computer algebra system Macaulay2 are available at https://github.com/ckadelka/BooleanCanalization.Comment: 13 pages, 1 figur

    A meta-analysis of Boolean network models reveals design principles of gene regulatory networks

    Full text link
    Gene regulatory networks (GRNs) describe how a collection of genes governs the processes within a cell. Understanding how GRNs manage to consistently perform a particular function constitutes a key question in cell biology. GRNs are frequently modeled as Boolean networks, which are intuitive, simple to describe, and can yield qualitative results even when data is sparse. We generate an expandable database of published, expert-curated Boolean GRN models, and extracted the rules governing these networks. A meta-analysis of this diverse set of models enables us to identify fundamental design principles of GRNs. The biological term canalization reflects a cell's ability to maintain a stable phenotype despite ongoing environmental perturbations. Accordingly, Boolean canalizing functions are functions where the output is already determined if a specific variable takes on its canalizing input, regardless of all other inputs. We provide a detailed analysis of the prevalence of canalization and show that most rules describing the regulatory logic are highly canalizing. Independent from this, we also find that most rules exhibit a high level of redundancy. An analysis of the prevalence of small network motifs, e.g. feed-forward loops or feedback loops, in the wiring diagram of the identified models reveals several highly abundant types of motifs, as well as a surprisingly high overabundance of negative regulations in complex feedback loops. Lastly, we provide the strongest evidence thus far in favor of the hypothesis that GRNs operate at the critical edge between order and chaos.Comment: 12 pages, 8 figure

    Distinct conformations of the HIV-1 V3 loop crown are targetable for broad neutralization.

    Get PDF
    The V3 loop of the HIV-1 envelope (Env) protein elicits a vigorous, but largely non-neutralizing antibody response directed to the V3-crown, whereas rare broadly neutralizing antibodies (bnAbs) target the V3-base. Challenging this view, we present V3-crown directed broadly neutralizing Designed Ankyrin Repeat Proteins (bnDs) matching the breadth of V3-base bnAbs. While most bnAbs target prefusion Env, V3-crown bnDs bind open Env conformations triggered by CD4 engagement. BnDs achieve breadth by focusing on highly conserved residues that are accessible in two distinct V3 conformations, one of which resembles CCR5-bound V3. We further show that these V3-crown conformations can, in principle, be attacked by antibodies. Supporting this conclusion, analysis of antibody binding activity in the Swiss 4.5 K HIV-1 cohort (n = 4,281) revealed a co-evolution of V3-crown reactivities and neutralization breadth. Our results indicate a role of V3-crown responses and its conformational preferences in bnAb development to be considered in preventive and therapeutic approaches
    corecore