66 research outputs found
Disruption of plasmepsin-4 and merozoites surface protein-7 genes in Plasmodium berghei induces combined virulence-attenuated phenotype
Blood stage malaria parasites causing a mild and self limited infection in mice have
been obtained with either radiation or chemical mutagenesis showing the possibility
of developing an attenuated malaria vaccine. Targeted disruption of plasmepsin-4
(pm4) or the merozoite surface protein-7 (msp7) genes also induces
a virulence-attenuated phenotype in terms of absence of experimental cerebral
malaria (ECM), delayed increase of parasitemia and reduced mortality rate. The
decrease in virulence in parasites lacking either pm4 or msp7 is
however incomplete and dependent on the parasite and mouse strain combination. The
sequential disruption of both genes induced remarkable virulence-attenuated
blood-stage parasites characterized by a self-resolving infection with low levels of
parasitemia and no ECM. Furthermore, convalescent mice were protected against the
challenge with P. berghei or P. yoelii parasites for several months.
These observations provide a proof-of-concept step for the development of human
malaria vaccines based on genetically attenuated blood-stage parasites
Regulated maturation of malaria merozoite surface protein-1 is essential for parasite growth
The malaria parasite Plasmodium falciparum invades erythrocytes where it replicates to produce invasive merozoites, which eventually egress to repeat the cycle. Merozoite surface protein-1 (MSP1), a prime malaria vaccine candidate and one of the most abundant components of the merozoite surface, is implicated in the ligand–receptor interactions leading to invasion. MSP1 is extensively proteolytically modified, first just before egress and then during invasion. These primary and secondary processing events are mediated respectively, by two parasite subtilisin-like proteases, PfSUB1 and PfSUB2, but the function and biological importance of the processing is unknown. Here, we examine the regulation and significance of MSP1 processing. We show that primary processing is ordered, with the primary processing site closest to the C-terminal end of MSP1 being cleaved last, irrespective of polymorphisms throughout the rest of the molecule. Replacement of the secondary processing site, normally refractory to PfSUB1, with a PfSUB1-sensitive site, is deleterious to parasite growth. Our findings show that correct spatiotemporal regulation of MSP1 maturation is crucial for the function of the protein and for maintenance of the parasite asexual blood-stage life cycle
Deletion of a Malaria Invasion Gene Reduces Death and Anemia, in Model Hosts
Malaria parasites induce complex cellular and clinical phenotypes, including anemia, cerebral malaria and death in a wide range of mammalian hosts. Host genes and parasite ‘toxins’ have been implicated in malarial disease, but the contribution of parasite genes remains to be fully defined. Here we assess disease in BALB/c mice and Wistar rats infected by the rodent malaria parasite Plasmodium berghei with a gene knock out for merozoite surface protein (MSP) 7. MSP7 is not essential for infection but in P. falciparum, it enhances erythrocyte invasion by 20%. In vivo, as compared to wild type, the P. berghei Δmsp7 mutant is associated with an abrogation of death and a decrease from 3% to 2% in peak, circulating parasitemia. The Δmsp7 mutant is also associated with less anemia and modest increase in the size of follicles in the spleen. Together these data show that deletion of a single parasite invasion ligand modulates blood stage disease, as measured by death and anemia. This work is the first to assess the contribution of a gene present in all plasmodial species in severe disease
piggyBac is an effective tool for functional analysis of the Plasmodium falciparum genome
<p>Abstract</p> <p>Background</p> <p>Much of the <it>Plasmodium falciparum </it>genome encodes hypothetical proteins with limited homology to other organisms. A lack of robust tools for genetic manipulation of the parasite limits functional analysis of these hypothetical proteins and other aspects of the <it>Plasmodium </it>genome. Transposon mutagenesis has been used widely to identify gene functions in many organisms and would be extremely valuable for functional analysis of the <it>Plasmodium </it>genome.</p> <p>Results</p> <p>In this study, we investigated the lepidopteran transposon, <it>piggyBac</it>, as a molecular genetic tool for functional characterization of the <it>Plasmodium falciparum </it>genome. Through multiple transfections, we generated 177 unique <it>P. falciparum </it>mutant clones with mostly single <it>piggyBac </it>insertions in their genomes. Analysis of <it>piggyBac </it>insertion sites revealed random insertions into the <it>P. falciparum </it>genome, in regards to gene expression in parasite life cycle stages and functional categories. We further explored the possibility of forward genetic studies in <it>P. falciparum </it>with a phenotypic screen for attenuated growth, which identified several parasite genes and pathways critical for intra-erythrocytic development.</p> <p>Conclusion</p> <p>Our results clearly demonstrate that <it>piggyBac </it>is a novel, indispensable tool for forward functional genomics in <it>P. falciparum </it>that will help better understand parasite biology and accelerate drug and vaccine development.</p
HDP—A Novel Heme Detoxification Protein from the Malaria Parasite
When malaria parasites infect host red blood cells (RBC) and proteolyze hemoglobin, a unique, albeit poorly understood parasite-specific mechanism, detoxifies released heme into hemozoin (Hz). Here, we report the identification and characterization of a novel Plasmodium Heme Detoxification Protein (HDP) that is extremely potent in converting heme into Hz. HDP is functionally conserved across Plasmodium genus and its gene locus could not be disrupted. Once expressed, the parasite utilizes a circuitous “Outbound–Inbound” trafficking route by initially secreting HDP into the cytosol of infected RBC. A subsequent endocytosis of host cytosol (and hemoglobin) delivers HDP to the food vacuole (FV), the site of Hz formation. As Hz formation is critical for survival, involvement of HDP in this process suggests that it could be a malaria drug target
Synergism/complementarity of recombinant adenoviral vectors and other vaccination platforms during induction of protective immunity against malaria
The lack of immunogenicity of most malaria antigens and the complex immune responses required for achieving protective immunity against this infectious disease have traditionally hampered the development of an efficient human malaria vaccine. The current boom in development of recombinant viral vectors and their use in prime-boost protocols that result in enhanced immune outcomes have increased the number of malaria vaccine candidates that access pre-clinical and clinical trials. In the frontline, adenoviruses and poxviruses seem to be giving the best immunization results in experimental animals and their mutual combination, or their combination with recombinant proteins (formulated in adjuvants and given in sequence or being given as protein/virus admixtures), has been shown to reach unprecedented levels of anti-malaria immunity that predictably will be somehow reproduced in the human setting. However, all this optimism was previously seen in the malaria vaccine development field without many real applicable results to date. We describe here the current state-of-the-art in the field of recombinant adenovirus research for malaria vaccine development, in particular referring to their use in combination with other immunogens in heterologous prime-boost protocols, while trying to simultaneously show our contributions and point of view on this subject
Systematic Genetic Analysis of the Plasmodium falciparum MSP7-Like Family Reveals Differences in Protein Expression, Location, and Importance in Asexual Growth of the Blood-Stage Parasite▿†‡
Proteins located on Plasmodium falciparum merozoites, the invasive form of the parasite's asexual blood stage, are of considerable interest in vaccine research. Merozoite surface protein 7 (MSP7) forms a complex with MSP1 and is encoded by a member of a multigene family located on chromosome 13. The family codes for MSP7 and five MSP7-related proteins (MSRPs). In the present study, we have investigated the expression and the effect of msrp gene deletion at the asexual blood stage. In addition to msp7, msrp2, msrp3, and msrp5 are transcribed, and mRNA was easily detected by hybridization analysis, whereas mRNA for msrp1 and msrp4 could be detected only by reverse transcription (RT)-PCR. Notwithstanding evidence of transcription, antibodies to recombinant MSRPs failed to detect specific proteins, except for antibodies to MSRP2. Sequential proteolytic cleavages of MSRP2 resulted in 28- and 25-kDa forms. However, MSRP2 was absent from merozoites; the 25-kDa MSRP2 protein (MSRP225) was soluble and secreted upon merozoite egress. The msrp genes were deleted by targeted disruption in the 3D7 line, leading to ablation of full-length transcripts. MSRP deletion mutants had no detectable phenotype, with growth and invasion characteristics comparable to those of the parental parasite; only the deletion of MSP7 led to a detectable growth phenotype. Thus, within this family some of the genes are transcribed at a significant level in asexual blood stages, but the corresponding proteins may or may not be detectable. Interactions of the expressed proteins with the merozoite also differ. These results highlight the potential for unexpected differences of protein expression levels within gene families
Deletion of the Plasmodium falciparum Merozoite Surface Protein 7 Gene Impairs Parasite Invasion of Erythrocytes▿
Merozoite surface proteins have been implicated in the initial attachment to the host red blood cell membrane that begins the process of invasion, an important step in the life cycle of the malaria parasite. In Plasmodium falciparum, merozoite surface proteins include several glycosylphosphatidyl inositol-anchored proteins and peripheral proteins attached to the membrane through protein-protein interactions. The most abundant of these proteins is the merozoite surface protein 1 (MSP1) complex, encoded by at least three genes: msp1, msp6, and msp7. The msp7 gene is part of a six-member multigene family in Plasmodium falciparum. We have disrupted msp7 in the Plasmodium falciparum D10 parasite, as confirmed by Southern hybridization. Immunoblot and indirect immunofluorescence analyses confirmed the MSP7 null phenotype of D10ΔMSP7 parasites. The synthesis, distribution, and processing of MSP1 were not affected in this parasite line. The level of expression and cellular distribution of the proteins MSP1, MSP3, MSP6, MSP9, and SERA5 remained comparable to those for the parental line. Furthermore, no significant change in the expression of MSP7-related proteins, except for that of MSRP5, was detected at the transcriptional level. The lack of MSP7 was not lethal at the asexual blood stage, but it did impair invasion of erythrocytes by merozoites to a significant degree. Despite this reduction in efficiency, D10ΔMSP7 parasites did not show any obvious preference for alternate pathways of invasion
- …