2 research outputs found

    Novel method for planar microstrip antenna matching impedance

    Full text link
    Because all microstrip antennas have to be matched to the standard generator impedance or load, the input impedance matching method for antenna is particularly important. In this paper a new methodology in achieving matching impedance of a planar microstrip antenna for wireless application is described. The method is based on embedding an Interdigital capacitor. The fine results obtained by using a microstrip Interdigital capacitor for matching antenna impedance led to an efficient method to improve array antenna performance. In fact, a substantial saving on the whole surfaces as well as enhancement of the gain, the directivity and the power radiated was achieved.Comment: Submitted to Journal of Telecommunications, see http://sites.google.com/site/journaloftelecommunications/volume-2-issue-2-may-201

    Novel Design of A Compact Proximity Coupled Fed Antenna

    No full text
    Certain applications such as RFID, on body sensors network, microwave systems usually require good matching impedance, high gain and large bandwidth for their antennas. The aperture coupled antenna is one candidate that can provide high gain large bandwidth and little packaging. Thus, it would be of interest to enhance the characteristics of a singly-fed aperture antenna used for Zigbee application. In this paper, we are presenting a new design of aperture coupled rectangular patch antenna operating at 2.45 GHz ISM-band frequency. The objective of this design is not limited to the improvement of the impedance bandwidth but also to better the coupling involved. The cross-polarisation (X-pol), the backward radiation and the half-power beam width in two orthogonal planes are also examined. The proposed design is based on a new aperture coupling technique in which two slots are fed by a microstrip line and coupled to a parasitic patch radiator etched on the opposite side from the slots. The matching impedance for a conventional aperture coupled microstrip antenna is obtained by the adjustment of the dimension of the slot and the feeding line. Here, the distance separating the slots is employed to control the coupling and modifying the input impedance of the antenna. Therefore, accurate matching impedance is reached with a good radiation pattern
    corecore