7 research outputs found

    Phase 3 Evaluation of an Innovative Simple Molecular Test for the Diagnosis of Malaria and Follow-Up of Treatment Efficacy in Pregnant Women in Sub-Saharan Africa (Preg-Diagmal)

    Full text link
    The malaria parasite Plasmodium falciparum (Pf) can sequester in the placenta resulting in low density of peripheral parasitemia and consequently in false negative malaria diagnosis (by microscopy) in pregnant women. Moreover, the use of rapid diagnostic tests (RDTs) in diagnostic strategies, including those for the detection of a malaria infection during pregnancy, is constrained by either persistent malaria antigen (histidine-rich protein 2; HRP2) after successful treatment, leading to false positive test results, or by false negative results as previously mentioned due to parasite sequestration (which is further exacerbated due to the low limited of detection [LoD] of conventional RDTs) or to HRP2 deletion. Recently, a direct blood polymerase chain reaction combined with a nucleic acid lateral flow immunoassay (dbPCR-NALFIA) has been developed, which circumvents these challenges and has demonstrated its diagnostic potential in phase 1 and 2 studies. The PREG-DIAGMAL trial presented in this manuscript will assess the diagnostic performance of dbPCR-NALFIA for the diagnostic of malaria in pregnant women and its potential to monitor treatment efficacy in these subjects. The work is ancillary embedded in an ongoing EDCTP funded trial, the PyraPreg project (PACTR202011812241529) in which the safety and efficacy of a newly registered Artemisinin-Based Combination (Pyronaridine-Artesunate) is being evaluated in pregnant women. This is a Phase 3 diagnostic evaluation conducted in 2 African countries: Democratic Republic of the Congo (DRC) and Burkina Faso. Pregnant women fulfilling the inclusion criteria of the PyraPreg study will be also invited to participate in the PREG-DIAGMAL study. Diagnostic accuracy will be assessed following the WHO/TDR guidelines for the evaluation of diagnostics and reported according to STARD principles. Due to the lack of a 100% specific and sensitive standard diagnostic test for malaria, the sensitivity and specificity of the new test will be compared to the available diagnostic practice in place at the selected settings (microscopy and/or RDT) and to quantitative PCR as the reference test. This phase 3 diagnostic study is designed towards the evaluation of the performance of a new diagnostic tool for the screening of malaria and the monitoring of treatment in pregnant women under real conditions life. If successful, the dbPCR-NALFIA could be a valuable tool to add to the diagnostic arsenal for malaria, in particular during pregnancy. Trial registration: Pan African Clinical Trial Registry database (PACTR202203780981413). Registered on 17 March 2022

    Red blood cell homeostasis in children and adults with and without asymptomatic malaria infection in Burkina Faso.

    Full text link
    Asymptomatic malaria infections may affect red blood cell (RBC) homeostasis. Reports indicate a role for chronic hemolysis and splenomegaly, however, the underlying processes are incompletely understood. New hematology analysers provide parameters for a more comprehensive analysis of RBC hemostasis. Complete blood counts were analysed in subjects from all age groups (n = 1118) living in a malaria hyperendemic area and cytokines and iron biomarkers were also measured. Subjects were divided into age groups (<2 years, 2-4, 5-14 and ≥15 years old) and clinical categories (smear-negative healthy subjects, asymptomatic malaria and clinical malaria). We found that hemoglobin levels were similar in smear-negative healthy children and asymptomatic malaria children but significantly lower in clinical malaria with a maximum difference of 2.2 g/dl in children <2 years decreasing to 0.1 g/dl in those aged ≥15 years. Delta-He, presenting different hemoglobinization of reticulocytes and RBC, levels were lower in asymptomatic and clinial malaria, indicating a recent effect of malaria on erythropoiesis. Reticulocyte counts and reticulocyte production index (RPI), indicating the erythropoietic capacity of the bone marrow, were higher in young children with malaria compared to smear-negative subjects. A negative correlation between reticulocyte counts and Hb levels was found in asymptomatic malaria (ρ = -0.32, p<0.001) unlike in clinical malaria (ρ = -0.008, p = 0.92). Free-Hb levels, indicating hemolysis, were only higher in clinical malaria. Phagocytozing monocytes, indicating erythophagocytosis, were highest in clinical malaria, followed by asymptomatic malaria and smear-negative subjects. Circulating cytokines and iron biomarkers (hepcidin, ferritin) showed similar patterns. Pro/anti-inflammatory (IL-6/IL-10) ratio was higher in clinical than asymptomatic malaria. Cytokine production capacity of ex-vivo whole blood stimulation with LPS was lower in children with asymptomatic malaria compared to smear-negative healthy children. Bone marrow response can compensate the increased red blood cell loss in asymptomatic malaria, unlike in clinical malaria, possibly because of limited level and length of inflammation. Trial registration: Prospective diagnostic study: ClinicalTrials.gov identifier: NCT02669823. Explorative cross-sectional field study: ClinicalTrials.gov identifier: NCT03176719.status: Published onlin

    Effects of maternal antenatal treatment with two doses of azithromycin added to monthly sulfadoxine-pyrimethamine for the prevention of low birth weight in Burkina Faso: an open-label randomized controlled trial.

    Full text link
    BACKGROUND: Exposure during pregnancy to malaria and sexually-transmitted infections is associated with adverse birth outcomes including low birth weight (LBW). This study aimed at assessing if the adjunction of two doses of azithromycin to sulfadoxine-pyrimethamine for the intermittent preventive treatment of malaria in pregnancy can reduce LBW. METHODS: A two parallel-groups, open-label randomized controlled trial involving pregnant women (16 to 35 years of age and 12 to 24 weeks of gestation as confirmed by last menstrual period or fundal height) was conducted in rural Burkina Faso. Women were assigned in a 1:1 ratio either to use azithromycin (1 g daily for 2 days) during the second and third trimesters of pregnancy plus monthly sulfadoxine-pyrimethamine (1500/75 mg) (SPAZ) (intervention) or to continue using a monthly sulfadoxine-pyrimethamine (1500/75 mg) (SP) (control). Primary outcome was a LBW (birth weight measured within 24 h after birth < 2500 g). Secondary outcomes including stillbirth, preterm birth or miscarriage are reported together with safety data. RESULTS: A total of 992 pregnant women underwent randomization (496 per group) and 898 (90.5%) valid birth weights were available (450 in SPAZ and 448 in SP). LBW incidence was 8.7% (39/450) in SPAZ and 9.4% (42/448) in controls (p-value = 0.79). Compared with controls, pregnant women with SPAZ showed a risk ratio (RR) of 1.16 (95% confidence interval (CI 0.64-2.08]) for preterm births, 0.75 (95% CI 0.17-3.35) for miscarriage and 0.64 (95% CI 0.25-1.64) for stillbirths. No treatment-related serious adverse events (SAEs) have been observed, and there was no significant difference in the number of SAEs (13.5% [67/496] in SPAZ, 16.7% [83/496] in SP, p-value = 0.18) or AEs (17.1% [85/496] in SPAZ, 18.8% [93/496] in SP, p-value = 0.56). CONCLUSION: Adequate prevention regimen with monthly sulfadoxine-pyrimethamine given to all pregnant women has been proved to reduce the risk of LBW in malaria endemic areas. Adding azithromycin to the regimen does not offer further benefits, as far as women receive a malaria prevention regimen early enough during pregnancy. Trial registration Pan African Clinical Trial Registry ( https://pactr.samrc.ac.za/Search.aspx ): PACTR201808177464681. Registered 21 August 2018

    Changing Dietary Habits: The Impact of Urbanization and Rising Socio-Economic Status in Families from Burkina Faso in Sub-Saharan Africa

    Full text link
    (1) Background: Sub-Saharan Africa is experiencing the fastest urbanization worldwide. People in rural areas still have a traditional and rural lifestyle, whereas the Westernization of diet and lifestyle is already evident in urban areas. This study describes dietary habits of families in Burkina Faso living at different levels of urbanization. (2) Methods: Data on lifestyle, socio-economic conditions, health status and anthropometry were collected from 30 families living in rural villages, a small town and the capital city. A food frequency questionnaire and a 24 h recall diary were used to estimate dietary habits and macronutrients intake. (3) Results: The urban cohort showed a more diversified diet, with a higher intake of animal protein and, especially in children, a higher consumption of simple sugars. Fiber intake was significantly higher in the rural and semi-urbanized cohorts. As expected, overweight and obesity gradually increased with the level of urbanization. In semi-urbanized and urban families, we observed coexistence of under- and over-nutrition, whereas in rural families, a portion of children were wasted and stunted, and adults were underweight. (4) Conclusions: These three cohorts represent a model of the effect on diet of rural-to-urban migration. Rural diet and traditional habits are replaced by a Western-oriented diet when families move to urbanized areas. This dietary transition and increased socio-economic status in newly developing urban areas have a major impact on disease epidemiology, resembling the past evolution in Western countries

    Effects of maternal antenatal treatment with two doses of azithromycin added to monthly sulfadoxine-pyrimethamine for the prevention of low birth weight in Burkina Faso: an open-label randomized controlled trial

    Full text link
    Background: Exposure during pregnancy to malaria and sexually-transmitted infections is associated with adverse birth outcomes including low birth weight (LBW). This study aimed at assessing if the adjunction of two doses of azithromycin to sulfadoxine-pyrimethamine for the intermittent preventive treatment of malaria in pregnancy can reduce LBW. Methods: A two parallel-groups, open-label randomized controlled trial involving pregnant women (16 to 35 years of age and 12 to 24 weeks of gestation as confirmed by last menstrual period or fundal height) was conducted in rural Burkina Faso. Women were assigned in a 1:1 ratio either to use azithromycin (1 g daily for 2 days) during the second and third trimesters of pregnancy plus monthly sulfadoxine-pyrimethamine (1500/75 mg) (SPAZ) (intervention) or to continue using a monthly sulfadoxine-pyrimethamine (1500/75 mg) (SP) (control). Primary outcome was a LBW (birth weight measured within 24 h after birth < 2500 g). Secondary outcomes including stillbirth, preterm birth or miscarriage are reported together with safety data. Results: A total of 992 pregnant women underwent randomization (496 per group) and 898 (90.5%) valid birth weights were available (450 in SPAZ and 448 in SP). LBW incidence was 8.7% (39/450) in SPAZ and 9.4% (42/448) in controls (p-value = 0.79). Compared with controls, pregnant women with SPAZ showed a risk ratio (RR) of 1.16 (95% confidence interval (CI 0.64–2.08]) for preterm births, 0.75 (95% CI 0.17–3.35) for miscarriage and 0.64 (95% CI 0.25–1.64) for stillbirths. No treatment-related serious adverse events (SAEs) have been observed, and there was no significant difference in the number of SAEs (13.5% [67/496] in SPAZ, 16.7% [83/496] in SP, p-value = 0.18) or AEs (17.1% [85/496] in SPAZ, 18.8% [93/496] in SP, p-value = 0.56). Conclusion: Adequate prevention regimen with monthly sulfadoxine-pyrimethamine given to all pregnant women has been proved to reduce the risk of LBW in malaria endemic areas. Adding azithromycin to the regimen does not offer further benefits, as far as women receive a malaria prevention regimen early enough during pregnancy. Trial registration Pan African Clinical Trial Registry (https://pactr.samrc.ac.za/Search.aspx): PACTR201808177464681. Registered 21 August 2018.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    A phase 3 Trial of RTS,S/AS01 Malaria Vaccine in African Infants.

    Get PDF
    \ud \ud The candidate malaria vaccine RTS,S/AS01 reduced episodes of both clinical and severe malaria in children 5 to 17 months of age by approximately 50% in an ongoing phase 3 trial. We studied infants 6 to 12 weeks of age recruited for the same trial. We administered RTS,S/AS01 or a comparator vaccine to 6537 infants who were 6 to 12 weeks of age at the time of the first vaccination in conjunction with Expanded Program on Immunization (EPI) vaccines in a three-dose monthly schedule. Vaccine efficacy against the first or only episode of clinical malaria during the 12 months after vaccination, a coprimary end point, was analyzed with the use of Cox regression. Vaccine efficacy against all malaria episodes, vaccine efficacy against severe malaria, safety, and immunogenicity were also assessed. The incidence of the first or only episode of clinical malaria in the intention-to-treat population during the 14 months after the first dose of vaccine was 0.31 per person-year in the RTS,S/AS01 group and 0.40 per person-year in the control group, for a vaccine efficacy of 30.1% (95% confidence interval [CI], 23.6 to 36.1). Vaccine efficacy in the per-protocol population was 31.3% (97.5% CI, 23.6 to 38.3). Vaccine efficacy against severe malaria was 26.0% (95% CI, -7.4 to 48.6) in the intention-to-treat population and 36.6% (95% CI, 4.6 to 57.7) in the per-protocol population. Serious adverse events occurred with a similar frequency in the two study groups. One month after administration of the third dose of RTS,S/AS01, 99.7% of children were positive for anti-circumsporozoite antibodies, with a geometric mean titer of 209 EU per milliliter (95% CI, 197 to 222). The RTS,S/AS01 vaccine coadministered with EPI vaccines provided modest protection against both clinical and severe malaria in young infants. (Funded by GlaxoSmithKline Biologicals and the PATH Malaria Vaccine Initiative; RTS,S ClinicalTrials.gov number, NCT00866619.)
    corecore