81 research outputs found

    Dilatancy in slow granular flows

    Get PDF
    When walking on wet sand, each footstep leaves behind a temporarily dry impression. This counterintuitive observation is the most common illustration of the Reynolds principle of dilatancy: that is, a granular packing tends to expand as it is deformed, therefore increasing the amount of porous space. Although widely called upon in areas such as soil mechanics and geotechnics, a deeper understanding of this principle is constrained by the lack of analytical tools to study this behavior. Using x-ray radiography, we track a broad variety of granular flow profiles and quantify their intrinsic dilatancy behavior. These measurements frame Reynolds dilatancy as a kinematic process. Closer inspection demonstrates, however, the practical importance of flow induced compaction which competes with dilatancy, leading more complex flow properties than expected

    Viscoelastic shear banding in foam

    Full text link
    Shear banding is an important feature of flow in complex fluids. Essentially, shear bands refer to the coexistence of flowing and non-flowing regions in driven material. Understanding the possible sources of shear banding has important implications for a wide range of flow applications. In this regard, quasi-two dimensional flow offers a unique opportunity to study competing factors that result in shear bands. One proposal is the competition between intrinsic dissipation and an external source of dissipation. In this paper, we report on the experimental observation of the transition between different classes of shear-bands that have been predicted to exist in cylindrical geometry as the result of this competition [R. J. Clancy, E. Janiaud, D. Weaire, and S. Hutzlet, Eur. J. Phys. E, {\bf 21}, 123 (2006)]

    X-ray observation of micro-failures in granular piles approaching an avalanche

    Get PDF
    An X-ray imaging technique is used to probe the stability of 3-dimensional granular packs in a slowly rotating drum. Well before the surface reaches the avalanche angle, we observe intermittent plastic events associated with collective rearrangements of the grains located in the vicinity of the free surface. The energy released by these discrete events grows as the system approaches the avalanche threshold. By testing various preparation methods, we show that the pre-avalanche dynamics is not solely controlled by the difference between the free surface inclination and the avalanche angle. As a consequence, the measure of the pre-avalanche dynamics is unlikely to serve as a tool for predicting macroscopic avalanches

    Strain-induced alignment in collagen gels

    Get PDF
    Collagen is the most abundant extracellular-network-forming protein in animal biology and is important in both natural and artificial tissues, where it serves as a material of great mechanical versatility. This versatility arises from its almost unique ability to remodel under applied loads into anisotropic and inhomogeneous structures. To explore the origins of this property, we develop a set of analysis tools and a novel experimental setup that probes the mechanical response of fibrous networks in a geometry that mimics a typical deformation profile imposed by cells in vivo. We observe strong fiber alignment and densification as a function of applied strain for both uncrosslinked and crosslinked collagenous networks. This alignment is found to be irreversibly imprinted in uncrosslinked collagen networks, suggesting a simple mechanism for tissue organization at the microscale. However, crosslinked networks display similar fiber alignment and the same geometrical properties as uncrosslinked gels, but with full reversibility. Plasticity is therefore not required to align fibers. On the contrary, our data show that this effect is part of the fundamental non-linear properties of fibrous biological networks.Comment: 12 pages, 7 figures. 1 supporting material PDF with 2 figure

    Tumour heterogeneity promotes collective invasion and cancer metastatic dissemination.

    Get PDF
    Heterogeneity within tumour cell populations is commonly observed in most cancers. However, its impact on metastatic dissemination, one of the primary determinants of the disease prognosis, remains poorly understood. Working with a simplified numerical model of tumour spheroids, we investigated the impact of mechanical heterogeneity on the onset of tumour invasion into surrounding tissues. Our work establishes a positive link between tumour heterogeneity and metastatic dissemination, and recapitulates a number of invasion patterns identified in vivo, such as multicellular finger-like protrusions. Two complementary mechanisms are at play in heterogeneous tumours. A small proportion of stronger cells are able to initiate and lead the escape of cells, while collective effects in the bulk of the tumour provide the coordination required to sustain the invasive process through multicellular streaming. This suggests that the multicellular dynamics observed during metastasis is a generic feature of mechanically heterogeneous cell populations and might rely on a limited and generic set of attributes
    corecore