93 research outputs found

    The Concept of Ecologically Oriented Progress and Natural Resource Preservation

    Get PDF
    The most important issue of scientific and technological progress is considering the environment challenges of industrial development. It means that the progress must be ecologically oriented and environmentally friendly. The most adequate concept for the approach to the issue of "man - society – nature" relations is the ontology of the noosphere - the idea of a common space for human beings and nature. It presents an ideal example of an optimistic attitude towards the coordination between accelerating the scientific and technological development and natural resource saving. However, to maintain the balance between human needs and environmental processes determined by this concept, it is essential to include the lean production training into technological development of society

    Synthesis and characterization of smooth ultrananocrystalline diamond films via low pressure bias-enhanced nucleation and growth

    Get PDF
    This letter describes the fundamental process underlying the synthesis of ultrananocrystalline diamond (UNCD) films, using a new low-pressure, heat-assisted bias-enhanced nucleation (BEN)/bias enhanced growth (BEG) technique, involving H2/CH4 gas chemistry. This growth process yields UNCD films similar to those produced by the Ar-rich/CH4 chemistries, with pure diamond nanograins (3–5 nm), but smoother surfaces (~6 nm rms) and higher growth rate (~1 µm/h). Synchrotron-based x-Ray absorption spectroscopy, atomic force microscopy, and transmission electron microscopy studies on the BEN-BEG UNCD films provided information critical to understanding the nucleation and growth mechanisms, and growth condition-nanostructure-property relationships

    Incorporating Fluorine Substitution into Conjugated Polymers for Solar Cells: Three Different Means, Same Results

    Get PDF
    Fluorinating conjugated polymers is a proven strategy for creating high performance materials in polymer solar cells, yet few studies have investigated the importance of the fluorination method. We compare the performance of three fluorinated systems: a poly(benzodithieno-dithienyltriazole) (PBnDT-XTAZ) random copolymer where 50% of the acceptor units are difluorinated, PBnDT-mFTAZ where every acceptor unit is monofluorinated, and a 1:1 physical blend of the difluorinated and nonfluorinated polymer. All systems have the same degree of fluorination (50%) yet via different methods (chemically vs physically, random vs regular). We show that these three systems have equivalent photovoltaic behavior: ∼5.2% efficiency with a short-circuit current (Jsc) at ∼11 mA cm-2, an open-circuit voltage (Voc) at 0.77 V, and a fill factor (FF) of ∼60%. Further investigation of these three systems demonstrates that the charge generation, charge extraction, and charge transfer state are essentially identical for the three studied systems. Transmission electron microscopy shows no significant differences in the morphologies. All these data illustrate that it is possible to improve performance not only via regular or random fluorination but also by physical addition via a ternary blend. Thus, our results demonstrate the versatility of incorporating fluorine in the active layer of polymer solar cells to enhance device performance. (Graph Presented)

    Are diamonds a MEMS\u27 best friend?

    Get PDF
    Next-generation military and civilian communication systems will require technologies capable of handling data/ audio, and video simultaneously while supporting multiple RF systems operating in several different frequency bands from the MHz to the GHz range [1]. RF microelectromechanical/nanoelectromechanical (MEMS/NEMS) devices, such as resonators and switches, are attractive to industry as they offer a means by which performance can be greatly improved for wireless applications while at the same time potentially reducing overall size and weight as well as manufacturing costs

    Low frequency 1/f noise in doped manganite grain-boundary junctions

    Full text link
    We have performed a systematic analysis of the low frequency 1/f-noise in single grain boundary junctions in the colossal magnetoresistance material La_{2/3}Ca_{1/3}MnO_{3-delta}. The grain boundary junctions were formed in epitaxial La_{2/3}Ca_{1/3}MnO_{3-delta} films deposited on SrTiO_3 bicrystal substrates and show a large tunneling magnetoresistance of up to 300% at 4.2 K as well as ideal, rectangular shaped resistance versus applied magnetic field curves. Below the Curie temperature T_C the measured 1/f noise is dominated by the grain boundary. The dependence of the noise on bias current, temperature and applied magnetic field gives clear evidence that the large amount of low frequency noise is caused by localized sites with fluctuating magnetic moments in a heavily disordered grain boundary region. At 4.2 K additional temporally unstable Lorentzian components show up in the noise spectra that are most likely caused by fluctuating clusters of interacting magnetic moments. Noise due to fluctuating domains in the junction electrodes is found to play no significant role.Comment: 9 pages, 7 figure

    Benefits of Aberration Correction for Ultra-Fast TEM Experiments

    No full text
    corecore