5 research outputs found

    Stimulatory Effect of Seed Priming as Pretreatment Factors on Germination and Yield Performance of Yard Long Bean (Vigna unguiculata)

    Get PDF
    Seed priming is a technique that can potentially facilitate rapid and consistent germination and subsequent plant growth. The present study investigates the effect of different seed priming treatments and processing times on germination and growth efficiency for the effective cultivation of Yard-long bean. Thirteen different primings were used to determine the stimulatory effect on the germination and yield performance of the Yard-long bean. The priming treatments included control (without priming); hydro priming for 12, 18, 24, and 30 h; halo priming (1% CaCl2) for 12, 18, 24, and 30 h; and halo priming (2% KNO3) for 12, 18, 24, and 30 h. Studies showing the highest level of germination (86.66%), germination index (35.69), seedling vigor index (1833.80), number of branches (7.20), and pod yields per plant (1836.00 g) were recorded from halo priming with 1% CaCl2 at 12 h treatment. Halo priming with 1% CaCl2 at 12 h is thus considered to be a compatible priming technique for the germination of seeds and a higher yield of Yard-long bean

    Stimulatory Effect of Seed Priming as Pretreatment Factors on Germination and Yield Performance of Yard Long Bean (Vigna unguiculata)

    No full text
    Seed priming is a technique that can potentially facilitate rapid and consistent germination and subsequent plant growth. The present study investigates the effect of different seed priming treatments and processing times on germination and growth efficiency for the effective cultivation of Yard-long bean. Thirteen different primings were used to determine the stimulatory effect on the germination and yield performance of the Yard-long bean. The priming treatments included control (without priming); hydro priming for 12, 18, 24, and 30 h; halo priming (1% CaCl2) for 12, 18, 24, and 30 h; and halo priming (2% KNO3) for 12, 18, 24, and 30 h. Studies showing the highest level of germination (86.66%), germination index (35.69), seedling vigor index (1833.80), number of branches (7.20), and pod yields per plant (1836.00 g) were recorded from halo priming with 1% CaCl2 at 12 h treatment. Halo priming with 1% CaCl2 at 12 h is thus considered to be a compatible priming technique for the germination of seeds and a higher yield of Yard-long bean

    High resolution melting curve analysis targeting the HBB gene mutational hot-spot offers a reliable screening approach for all common as well as most of the rare beta-globin gene mutations in Bangladesh

    No full text
    Abstract Background Bangladesh lies in the global thalassemia belt, which has a defined mutational hot-spot in the beta-globin gene. The high carrier frequencies of beta-thalassemia trait and hemoglobin E-trait in Bangladesh necessitate a reliable DNA-based carrier screening approach that could supplement the use of hematological and electrophoretic indices to overcome the barriers of carrier screening. With this view in mind, the study aimed to establish a high resolution melting (HRM) curve-based rapid and reliable mutation screening method targeting the mutational hot-spot of South Asian and Southeast Asian countries that encompasses exon-1 (c.1 - c.92), intron-1 (c.92 + 1 - c.92 + 130) and a portion of exon-2 (c.93 - c.217) of the HBB gene which harbors more than 95% of mutant alleles responsible for beta-thalassemia in Bangladesh. Results Our HRM approach could successfully differentiate ten beta-globin gene mutations, namely c.79G > A, c.92 + 5G > C, c.126_129delCTTT, c.27_28insG, c.46delT, c.47G > A, c.92G > C, c.92 + 130G > C, c.126delC and c.135delC in heterozygous states from the wild type alleles, implying the significance of the approach for carrier screening as the first three of these mutations account for ~85% of total mutant alleles in Bangladesh. Moreover, different combinations of compound heterozygous mutations were found to generate melt curves that were distinct from the wild type alleles and from one another. Based on the findings, sixteen reference samples were run in parallel to 41 unknown specimens to perform direct genotyping of the beta-thalassemia specimens using HRM. The HRM-based genotyping of the unknown specimens showed 100% consistency with the sequencing result. Conclusions Targeting the mutational hot-spot, the HRM approach could be successfully applied for screening of beta-thalassemia carriers in Bangladesh as well as in other countries of South Asia and Southeast Asia. The approach could be a useful supplement of hematological and electrophortic indices in order to avoid false positive and false negative results

    Mutation Spectrum in TPO Gene of Bangladeshi Patients with Thyroid Dyshormonogenesis and Analysis of the Effects of Different Mutations on the Structural Features and Functions of TPO Protein through In Silico Approach

    No full text
    Although thyroid dyshormonogenesis (TDH) accounts for 10-20% of congenital hypothyroidism (CH), the molecular etiology of TDH is unknown in Bangladesh. Thyroid peroxidase (TPO) is most frequently associated with TDH and the present study investigated the spectrum of TPO mutations in Bangladeshi patients and analyzed the effects of mutations on TPO protein structure through in silico approach. Sequencing-based analysis of TPO gene revealed four mutations in 36 diagnosed patients with TDH including three nonsynonymous mutations, namely, p.Ala373Ser, p.Ser398Thr, and p.Thr725Pro, and one synonymous mutation p.Pro715Pro. Homology modelling-based analysis of predicted structures of MPO-like domain (TPO142-738) and the full-length TPO protein (TPO1-933) revealed differences between mutant and wild type structures. Molecular docking studies were performed between predicted structures and heme. TPO1-933 predicted structure showed more reliable results in terms of interactions with the heme prosthetic group as the binding energies were -11.5 kcal/mol, -3.2 kcal/mol, -11.5 kcal/mol, and -7.9 kcal/mol for WT, p.Ala373Ser, p.Ser398Thr, and p.Thr725Pro, respectively, implying that p.Ala373Ser and p.Thr725Pro mutations were more damaging than p.Ser398Thr. However, for the TPO142-738 predicted structures, the binding energies were -11.9 kcal/mol, -10.8 kcal/mol, -2.5 kcal/mol, and -5.3 kcal/mol for the wild type protein, mutant proteins with p.Ala373Ser, p.Ser398Thr, and p.Thr725Pro substitutions, respectively. However, when the interactions between the crucial residues including residues His239, Arg396, Glu399, and His494 of TPO protein and heme were taken into consideration using both TPO1-933 and TPO142-738 predicted structures, it appeared that p.Ala373Ser and p.Thr725Pro could affect the interactions more severely than the p.Ser398Thr. Validation of the molecular docking results was performed by computer simulation in terms of quantum mechanics/molecular mechanics (QM/MM) and molecular dynamics (MD) simulation. In conclusion, the substitutions mutations, namely, p.Ala373Ser, p.Ser398Thr, and p.Thr725Pro, had been involved in Bangladeshi patients with TDH and molecular docking-based study revealed that these mutations had damaging effect on the TPO protein activity
    corecore