7 research outputs found

    CoV-TI-Net: Transferred Initialization with Modified End Layer for COVID-19 Diagnosis

    Full text link
    This paper proposes transferred initialization with modified fully connected layers for COVID-19 diagnosis. Convolutional neural networks (CNN) achieved a remarkable result in image classification. However, training a high-performing model is a very complicated and time-consuming process because of the complexity of image recognition applications. On the other hand, transfer learning is a relatively new learning method that has been employed in many sectors to achieve good performance with fewer computations. In this research, the PyTorch pre-trained models (VGG19\_bn and WideResNet -101) are applied in the MNIST dataset for the first time as initialization and with modified fully connected layers. The employed PyTorch pre-trained models were previously trained in ImageNet. The proposed model is developed and verified in the Kaggle notebook, and it reached the outstanding accuracy of 99.77% without taking a huge computational time during the training process of the network. We also applied the same methodology to the SIIM-FISABIO-RSNA COVID-19 Detection dataset and achieved 80.01% accuracy. In contrast, the previous methods need a huge compactional time during the training process to reach a high-performing model. Codes are available at the following link: github.com/dipuk0506/SpinalNe

    Reduction of Class Activation Uncertainty with Background Information

    Full text link
    Multitask learning is a popular approach to training high-performing neural networks with improved generalization. In this paper, we propose a background class to achieve improved generalization at a lower computation compared to multitask learning to help researchers and organizations with limited computation power. We also present a methodology for selecting background images and discuss potential future improvements. We apply our approach to several datasets and achieved improved generalization with much lower computation. We also investigate class activation mappings (CAMs) of the trained model and observed the tendency towards looking at a bigger picture in a few class classification problems with the proposed model training methodology. Example scripts are available in the `CAM' folder of the following GitHub Repository: github.com/dipuk0506/U

    Swarm Intelligence in Internet of Medical Things: A Review

    No full text
    Continuous advancements of technologies such as machine-to-machine interactions and big data analysis have led to the internet of things (IoT) making information sharing and smart decision-making possible using everyday devices. On the other hand, swarm intelligence (SI) algorithms seek to establish constructive interaction among agents regardless of their intelligence level. In SI algorithms, multiple individuals run simultaneously and possibly in a cooperative manner to address complex nonlinear problems. In this paper, the application of SI algorithms in IoT is investigated with a special focus on the internet of medical things (IoMT). The role of wearable devices in IoMT is briefly reviewed. Existing works on applications of SI in addressing IoMT problems are discussed. Possible problems include disease prediction, data encryption, missing values prediction, resource allocation, network routing, and hardware failure management. Finally, research perspectives and future trends are outlined
    corecore