4 research outputs found

    Direct genetic demonstration of Gα13 coupling to the orphan G protein-coupled receptor G2A leading to RhoA-dependent actin rearrangement

    Get PDF
    G2A is an orphan G protein-coupled receptor (GPCR), expressed predominantly in T and B cells and homologous to a small group of GPCRs of unknown function expressed in lymphoid tissues. G2A is transcriptionally induced in response to diverse stimuli, and its ectopic expression suppresses transformation of B lymphoid precursors by BCR-ABL. G2A induces morphological transformation of NIH 3T3 fibroblasts. Microinjection of constructs encoding G2A into Swiss 3T3 fibroblasts induces actin reorganization into stress fibers that depends on RhoA, but not CDC42 or RAC. G2A elicits RhoA-dependent transcriptional activation of serum response factor. Direct evaluation of RhoA activity demonstrates elevated levels of RhoA-GTP in G2A-expressing cells. Microinjection of embryonic fibroblasts derived from various Galpha knockout mice establishes a requirement for Galpha 13 but not Galpha 12 or Galpha q/11 in G2A-induced actin rearrangement. In conclusion, G2A represents a family of GPCRs expressed in lymphocytes that may link diverse stimuli to cytoskeletal reorganization and transcriptional activation through a pathway involving Galpha 13 and RhoA

    Obesity Superimposed on Aging Magnifies Inflammation and Delays the Resolving Response after Myocardial Infarction

    No full text
    Polyunsaturated fatty acid (PUFA) intake has increased over the last 100 yr, contributing to the current obesogenic environment. Obesity and aging are prominent risk factors for myocardial infarction (MI). How obesity interacts with aging to alter the post-MI response, however, is unclear. We tested the hypothesis that obesity in aging mice would impair the resolution of post-MI inflammation. PUFA diet (PUFA aging group) feeding to 12-mo-old C57BL/6J mice for 5 mo showed higher fat mass compared with standard lab chow (LC)-fed young (LC young group; 3-5 mo old) or aging alone control mice (LC aging group). LC young, LC aging, and PUFA aging mice were subjected to coronary artery ligation to induce MI. Despite similar infarct areas post-MI, plasma proteomic profiling revealed higher VCAM-1 in the PUFA aging group compared with LC young and LC aging groups, leading to increased neutrophil infiltration in the PUFA aging group (P \u3c 0.05). Macrophage inflammatory protein-17 and CD40 were also increased at day 1, and myeloperoxidase remained elevated at day 5, an observation consistent with delayed wound healing in the PUFA aging group. Lipidomic analysis showed higher levels of arachidonic acid and 12(S)-hydroxyeicosatetraenoic acid at day 1 post-MI in the PUFA aging group compared with the LC aging group (all P \u3c 0.05), thereby mediating neutrophil extravasation in the PUFA aging group. The inflammation-resolving enzymes 5-li-poxygenase, cyclooxygenase-2, and heme oxyegnase-1 were altered to delay wound healing post-MI in the PUFA aging group compared with LC young and LC aging groups. PUFA aging magnifies the post-MI inflammatory response and impairs the healing response by stimulating prolonged neutrophil trafficking and proinflammatory lipid mediators
    corecore