244 research outputs found
Brain delivery of proteins via their fatty acid and block copolymer modifications
It is well known that hydrophobic small molecules penetrate cell membranes better than hydrophilic molecules. Amphiphilic molecules that dissolve both in lipid and aqueous phases are best suited for membrane transport. Transport of biomacromolecules across physiological barriers, e.g. the blood-brain barrier, is greatly complicated by the unique structure and function of such barriers. Two decades ago we adopted a simple philosophy that to increase protein delivery to the brain one needs to modify this protein with hydrophobic moieties. With this general idea we began modifying proteins (antibodies, enzymes, hormones, etc.) with either hydrophobic fatty acid residues or amphiphilic block copolymer moieties, such as poy(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (pluronics or poloxamers) and more recently, poly(2-oxasolines). This simple approach has resulted in impressive successes in CNS drug delivery. We present a retrospective overview of these works initiated in the Soviet Union in 1980s, and then continued in the United States and other countries. Notably some of the early findings were later corroborated by brain pharmacokinetic data. Industrial development of several drug candidates employing these strategies has followed. Overall modification by hydrophobic fatty acids residues or amphiphilic block copolymers represents a promising and relatively safe strategy to deliver proteins to the brain
Fatty acid acylated Fab-fragments of antibodies to neurospecific proteins as carriers for neuroleptic targeted delivery in brain
AbstractA method for targeted delivery of neuroleptics from blood in brain based on using Fab-fragments of antibodies to antigens of brain glia cells (acid gliofibrillar antigen and Îą2-glycoprotein) is suggested. The essence of the technique is that the molecule of neuroleptic (trifluoperazine) is conjugated with Fab-fragments of these antibodies. The conjugate thus obtained is modified by stearoylchloride in the system of Aerosol OT reversed micelles in octane. The study of the distribution of 125I-labelled conjugates in the rat organism after intracordial introduction is performed. On the contrary to the nonmodified conjugates and conjugate, containing fatty acylated Fab-fragments of antibodies, nonspecific to the rat brain, the conjugate of trifluoperazine with stearoylated Fab-fragments of antibodies to neurospecific antigens accumulate in brain tissues. The drastic increase of the neuroleptic activity of trifluoperazine resulting from its coupling with stearoylated Fab-fragments of antiglial antibodies is observed
Pluronics and MDR Reversal: An Update
Multidrug resistance (MDR) remains one of the biggest obstacles for effective cancer therapy. Currently there are only few methods that are available clinically that are used to bypass MDR with very limited success. In this review we describe how MDR can be overcome by a simple yet effective approach of using amphiphilic block copolymers. Triblock copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), arranged in a triblock structure PEO-PPO-PEO, Pluronics or âpoloxamersâ, raised a considerable interest in the drug delivery field. Previous studies demonstrated that Pluronics sensitize MDR cancer cells resulting in increased cytotoxic activity of Dox, paclitaxel, and other drugs by 2â3 orders of magnitude. Pluronics can also prevent the development of MDR in vitro and in vivo. Additionally, promising results of clinical studies of Dox/Pluronic formulation reinforced the need to ascertain a thorough understanding of Pluronic effects in tumors. These effects are extremely comprehensive and appear on the level of plasma membranes, mitochondria, and regulation of gene expression selectively in MDR cancer cells. Moreover, it has been demonstrated recently that Pluronics can effectively deplete tumorigenic intrinsically drug-resistant cancer stem cells (CSC). Interestingly, sensitization of MDR and inhibition of drug efflux transporters is not specific or selective to Pluronics. Other amphiphilic polymers have shown similar activities in various experimental models. This review summarizes recent advances of understanding the Pluronic effects in sensitization and prevention of MDR
Evaluation of polyplexes as gene transfer agents
Non-viral transfection systems based on the complexes of DNA and polycations (âpolyplexesâ) were evaluated with respect to their effectiveness, toxicity and cell type dependence in a variety of in vitro models. The panel of polycations examined included branched and linear polyethyleneimines, poly[N-ethyl-4-vinyl pyridinium bromide], polyamidoamine dendrimer (Superfectâ˘), poly(propyleneimine) dendrimer (Astramolâ˘) and a conjugate of PluronicÂŽ P123 and polyethyleneimine (P123-g-PEI(2K)), having a graft-block copolymer architecture. Using a panel of cell lines the linear polyethyleneimine ExGen⢠500, Superfectâ˘, branched polyethyleneimine 25 kDa, and P123-g-PEI(2K) were determined as systems displaying highest transfection activity while exhibiting relatively low cytotoxicity. These systems had activity higher than or comparable to lipid transfection reagents (LipofectinÂŽ, LipofectAMINEâ˘, CeLLFECTINÂŽ and DMRIE-C) but did not reveal serum dependence and were less toxic than the lipids. Overall, this study demonstrates good potential of structurally diverse polyplex systems as transfection reagents with relatively low cytotoxicity
Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells
A new family of nanoscale materials on the basis of dispersed networks of cross-linked ionic and nonionic hydrophilic polymers is being developed. One example is the nanosized cationic network of cross-linked poly(ethylene oxide) (PEO) and polyethyleneimine (PEI), PEO-cl-PEI nanogel. Interaction of anionic amphiphilic molecules or oligonucleotides with PEO-cl-PEI results in formation of nanocomposite materials in which the hydrophobic regions from polyion-complexes are joined by the hydrophilic PEO chains. Formation of polyion-complexes leads to the collapse of the dispersed gel particles. However, the complexes form stable aqueous dispersions due to the stabilizing effect of the PEO chain. These systems allow for immobilization of negatively charged biologically active compounds such as retinoic acid, indomethacin and oligonucleotides (bound to polycation chains) or hydrophobic molecules (incorporated into nonpolar regions of polyionâsurfactant complexes). The nanogel particles carrying biological active compounds have been modified with polypeptide ligands to enhance receptor-mediated delivery. Efficient cellular uptake and intracellular release of oligonucleotides immobilized in PEO-cl-PEI nanogel have been demonstrated. Antisense activity of an oligonucleotide in a cell model was elevated as a result of formulation of oligonucleotide with the nanogel. This delivery system has a potential of enhancing oral and brain bioavailability of oligonucleotides as demonstrated using polarized epithelial and brain microvessel endothelial cell monolayers
Soluble Stoichiometric Complexes from Poly(N-ethyl-4-vinylpyridinium) Cations and Poly(ethylene oxide)-block-polymethacrylate Anions
Block ionomer complexes formed between the block copolymers containing poly(sodium
methacrylate) (PMANa) and poly(ethylene oxide) (PEO) segments and poly(N-ethyl-4-vinylpyridinium
bromide) (PEVP) were investigated. The data obtained suggest that (i) these systems form water-soluble
stoichiometric complexes; (ii) these complexes are stable in a much broader pH range compared to the
polyelectrolyte complexes prepared from homopolymers; (iii) they self-assemble to form the core of a micelle
comprised of neutralized polyions, surrounded by the PEO corona; (iv) they are salt sensitive since they
fall apart as the salt concentration increases beyond a critical value; and (v) they can participate in the
cooperative polyion substitution reactions. Therefore, these complexes represent a new class of hybrid
materials which combine properties of polyelectrolyte complexes and block copolymer micelles
Horizontal gene transfer from macrophages to ischemic muscles upon delivery of naked DNA with Pluronic block copolymers
Intramuscular administration of plasmid DNA (pDNA) with non-ionic Pluronic block copolymers increases gene expression in injected muscles and lymphoid organs. We studied the role of immune cells in muscle transfection upon inflammation. Local inflammation in murine hind limb ischemia model (MHLIM) drastically increased DNA, RNA and expressed protein levels in ischemic muscles injected with pDNA/Pluronic. The systemic inflammation (MHLIM or peritonitis) also increased expression of pDNA/Pluronic in the muscles. When pDNA/Pluronic was injected in ischemic muscles the reporter gene, Green Fluorescent Protein (GFP) co-localized with desmin+ muscle fibers and CD11b+ macrophages (MĂs), suggesting transfection of MĂs along with the muscle cells. P85 enhanced (~4 orders) transfection of MĂs with pDNA in vitro. Moreover, adoptively transferred MĂs were shown to pass the transgene to inflamed muscle cells in MHLIM. Using a co-culture of myotubes (MTs) and transfected MĂs expressing a reporter gene under constitutive (cmv-luciferase) or muscle specific (desmin-luciferase) promoter we demonstrated that P85 enhances horizontal gene transfer from MĂ to MTs. Therefore, MĂs can play an important role in muscle transfection with pDNA/Pluronic during inflammation, with both inflammation and Pluronic contributing to the increased gene expression. pDNA/Pluronic has potential for therapeutic gene delivery in muscle pathologies that involve inflammation
Endocytosis of nanomedicines
Novel nanomaterials are being developed to improve diagnosis and therapy of diseases through effective delivery of drugs, biopharmaceutical molecules and imaging agents to target cells in disease sites. Such diagnostic and therapeutic nanomaterials, also termed ânanomedicinesâ, often require site-specific cellular entry to deliver their payload to sub-cellular locations hidden beneath cell membranes. Nanomedicines can employ multiple pathways for cellular entry, which are currently insufficiently understood. This review, first, classifies various mechanisms of endocytosis available to nanomedicines including phagocytosis and pinocytosis through clathrin-dependent and clathrin-independent pathways. Second, it describes the current experimental tools to study endocytosis of nanomedicines. Third, it provides specific examples from recent literature and our own work on endocytosis of nanomedicines. Finally, these examples are used to ascertain 1) the role of particle size, shape, material composition, surface chemistry and/or charge for utilization of a selected pathway(s); 2) the effect of cell type on the processing of nanomedicines; and 3) the effect of nanomaterial-cell interactions on the processes of endocytosis, the fate of the nanomedicines and the resulting cellular responses. This review will be useful to a diverse audience of students and scientists who are interested in understanding endocytosis of nanomedicines
Can nanomedicines kill cancer stem cells?
Most tumors are heterogeneous and many cancers contain small population of highly tumorigenic and intrinsically drug resistant cancer stem cells (CSCs). Like normal stem cell, CSCs have ability to self-renew and differentiate to other tumor cell types. They are believed to be a source for drug resistance, tumor recurrence and metastasis. CSCs often overexpress drug efflux transporters, spend most of their time in non-dividing G0 cell cycle state, and therefore, can escape the conventional chemotherapies. Thus, targeting CSCs is essential for developing novel therapies to prevent cancer relapse and emerging of drug resistance. Nanocarrier-based therapeutic agents (nanomedicines) have been used to achieve longer circulation times, better stability and bioavailability over current therapeutics. Recently, some groups have successfully applied nanomedicines to target CSCs to eliminate the tumor and prevent its recurrence. These approaches include 1) delivery of therapeutic agents (small molecules, siRNA, antibodies) that affect embryonic signaling pathways implicated in self-renewal and differentiation in CSCs, 2) inhibiting drug efflux transporters in an attempt to sensitize CSCs to therapy, 3) targeting metabolism in CSCs through nanoformulated chemicals and field-responsive magnetic nanoparticles and carbon nanotubes, and 4) disruption of multiple pathways in drug resistant cells using combination of chemotherapeutic drugs with amphiphilic Pluronic block copolymers. Despite clear progress of these studies the challenges of targeting CSCs by nanomedicines still exist and leave plenty of room for improvement and development. This review summarizes biological processes that are related to CSCs, overviews the current state of anti-CSCs therapies, and discusses state-of-the-art nanomedicine approaches developed to kill CSCs
Poly(2-oxazoline)-Based Polyplexes as a PEG-Free Plasmid DNA Delivery Platform
The present study expands the versatility of cationic poly(2-oxazoline) (POx) copolymers as a polyethylene glycol (PEG)-free platform for gene delivery to immune cells, such as monocytes and macrophages. Several block copolymers are developed by varying nonionic hydrophilic blocks (poly(2-methyl-2-oxazoline) (pMeOx) or poly(2-ethyl-2-oxazoline) (pEtOx), cationic blocks, and an optional hydrophobic block (poly(2-isopropyl-2-oxazoline) (iPrOx). The cationic blocks are produced by side chain modification of 2-methoxy-carboxyethyl-2-oxazoline (MestOx) block precursor with diethylenetriamine (DET) or tris(2-aminoethyl)amine (TREN). For the attachment of a targeting ligand, mannose, azide-alkyne cycloaddition click chemistry methods are employed. Of the two cationic side chains, polyplexes made with DET-containing copolymers transfect macrophages significantly better than those made with TREN-based copolymer. Likewise, nontargeted pEtOx-based diblock copolymer is more active in cell transfection than pMeOx-based copolymer. The triblock copolymer with hydrophobic block iPrOx performs poorly compared to the diblock copolymer which lacks this additional block. Surprisingly, attachment of a mannose ligand to either copolymer is inhibitory for transfection. Despite similarities in size and design, mannosylated polyplexes result in lower cell internalization compared to nonmannosylated polyplexes. Thus, PEG-free, nontargeted DET-, and pEtOx-based diblock copolymer outperforms other studied structures in the transfection of macrophages and displays transfection levels comparable to GeneJuice, a commercial nonlipid transfection reagent
- âŚ