14 research outputs found

    Frequency-Tunable and Pattern Diversity Antennas for Cognitive Radio Applications

    Get PDF
    Frequency-tunable microstrip antennas, for cognitive radio applications, are proposed herein. The approach is based on tuning the operating frequency of a bandpass filter that is incorporated into a wideband antenna. The integration of an open loop resonator- (OLR-) based adjustable bandpass filter into a wideband antenna to transform it into a tunable filter-antenna is presented. The same technique is employed to design a cognitive radio pattern diversity tunable filter-antenna. A good agreement between the simulated and measured results for the fabricated prototypes is obtained. The radiation characteristics of each designed tunable filter-antenna are included herein

    Compact Circularly Polarized Multiband Antennas for RFID Applications

    Get PDF
    This paper presents multiband circularly polarized (CP) antennas for radio frequency identification (RFID). A coax-fed and a microstrip-line-fed antennas having optimized cross-slots in their patches are first designed for dual-band CP operation. The microstrip-line-fed design is then modified, by incorporating a U-shaped slot in its partial ground plane, to achieve additional operation band with a CP characteristic. Simulation and measured results of the presented designs are reported. The measured results are in accordance with the computed ones. The compact size and CP property make these designs suitable for RFID applications

    Propagation of the Lower Hybrid wave in a density fluctuating SOL

    No full text
    The perturbation of the lower hybrid wave (LH) power spectrum by fluctuations of the plasma in the vicinity of the antenna is investigated by solving the full wave equation in a slab geometry using COMSOL Multiphysics®. The numerical model whose generality allows to study the effect of various types of fluctuations, including those with short characteristic wavelengths is validated against a coupling code in quiescent regimes. When electron density fluctuations along the toroidal direction are incorporated in the dielectric tensor over a thin perturbed layer in front of the grill, the power spectrum may be strongly modified from the antenna mouth to the plasma separatrix as the LH wave propagates. The diffraction effect by density fluctuations leads to the appearance of multiple satellite lobes with randomly varying positions and the averaged perturbation is found to be maximum for the Fourier components of the fluctuating spectrum in the vicinity of the launched LH wavelength. This highlights that fast toroidal inhomogeneities with short characteristics length scales in front of the grill may change significantly the initial LH power spectrum used in coupled ray-tracing and FokkerâPlanck calculations

    Interaction between the Lower Hybrid wave and density fluctuations in the scrape-off layer

    No full text
    In the present paper, the perturbation of the launched power spectrum of the Lower Hybrid wave at the separatrix by electron density fluctuations in the scrape-off layer is investigated. Considering a slab geometry with magnetic field lines parallel to the toroidal direction, the full wave equation is solved using Comsol Multiphysics r for a fully active multi-junction like LH antenna made of two modules. When electron density fluctuations are incorporated in the dielectric tensor over a thin perturbed layer in front of the grill, it is shown that the power spectrum may be strongly modified from the antenna mouth to the plasma separatrix as the wave propagates. The diffraction effect leads to the appearance of multiple satellite lobes with randomly varying positions, a feature consistent with the recently developed model that has been applied successfully to high density discharges on the Tokamak Tore Supra corresponding to the large spectral gap regime [Decker J. et al. Phys. Plasma 21 (2014) 092504]. The perturbation is found to be maximum for the Fourier components of the fluctuating spectrum in the vicinity of the launched LH wavelength

    Recent Advances on Radio-Frequency Design in Cognitive Radio

    No full text
    With the growth of mobile data applications, the spectrum allocation is becoming very scarce. To ease congestion and boost speeds, cognitive radio (CR) is currently seen as a major solution and expected to be the key player in the new wireless technologies. In this paper, we will start by introducing the cognitive radio systems, followed by exploring the challenges in designing RF engine, along with an investigation of its antennas, amplifiers, oscillators, and the components that are expected to operate over a wide range of frequencies

    Improved Vlasov Antenna with Curved Cuts and Optimized Reflector Position and Shape

    No full text
    This paper presents a Vlasov antenna with curved cut shape and improved reflector position and geometry suitable for high power microwave applications. The curved shape of the proposed cut totally eliminates the sharp edges and angles present in Vlasov antennas with step and bevel cuts. Furthermore, with the proposed reflector configuration, the wave is radiated in the direction of the axis of the waveguide. A Vlasov antenna, designed for operation at 3 GHz, is used to compare the three cut types. An additional comparison is conducted to validate the concept of the enhanced reflector position, using the bevel-cut antenna and the improved cut. The proposed antenna results in increased antenna gain and in good performance in terms of sidelobe level and half-power beamwidth, with maximum radiation directed toward the axis of the waveguide center

    Wearable Blood Pressure Sensing Based on Transmission Coefficient Scattering for Microstrip Patch Antennas

    No full text
    Painless, cuffless and continuous blood pressure monitoring sensors provide a more dynamic measure of blood pressure for critical diagnosis or continuous monitoring of hypertensive patients compared to current cuff-based options. To this end, a novel flexible, wearable and miniaturized microstrip patch antenna topology is proposed to measure dynamic blood pressure (BP). The methodology was implemented on a simulated five-layer human tissue arm model created and designed in High-Frequency Simulation Software “HFSS”. The electrical properties of the five-layer human tissue were set at the frequency range (2–3) GHz to comply with clinical/engineering standards. The fabricated patch incorporated on a 0.4 mm epoxy substrate achieved consistency between the simulated and measured reflection coefficient results at flat and bent conditions over the frequency range of 2.3–2.6 GHz. Simulations for a 10 g average specific absorption rate (SAR) based on IEEE-Standard for a human arm at different input powers were also carried out. The safest input power was 50 mW with an acceptable SAR value of 3.89 W/Kg < 4W/Kg. This study also explored a novel method to obtain the pulse transit time (PTT) as an option to measure BP. Pulse transmit time is based on obtaining the time difference between the transmission coefficient scattering waveforms measured between the two pairs of metallic sensors underlying the assumption that brachial arterial geometries are dynamic. Consequently, the proposed model is validated by comparing it to the standard nonlinear Moens and Korteweg model over different artery thickness-radius ratios, showing excellent correlation between 0.76 ± 0.03 and 0.81 ± 0.03 with the systolic and diastolic BP results. The absolute risk of arterial blood pressure increased with the increase in brachial artery thickness-radius ratio. The results of both methods successfully demonstrate how the radius estimates, PTT and pulse wave velocity (PWV), along with electromagnetic (EM) antenna transmission propagation characteristics, can be used to estimate continuous BP non-invasively
    corecore