164 research outputs found

    A Novel Analytic Measure for the Water Maze Utilizing the Concept of Entropy

    Get PDF
    Pressure in various organs and body parts, such as blood vessels, heart, brain, eyes, bladder and GI tracts, is an important indication of health. Long term, continuous pressure monitoring is critically needed for a number of applications. When combined with existing neuro-prosthetics devices, they may provide better solutions to many neural disorders. First efforts toward a long term implantable pressure-monitoring system were initiated more than forty years ago. However, a reliable, safe and implantable pressure sensor for long-term applications is not yet commercially available. This paper attempts to reveal the design challenges associated with the development of a long-term implantable pressure sensor

    Reviewer acknowledgement

    Get PDF
    Contributing reviewers The editors of Molecular Brain would like to thank all our reviewers who have contributed to the journal in Volume 8 (2015)

    Increased social interaction in Shank2-deficient mice following acute social isolation

    Get PDF
    Autism spectrum disorder (ASD) is neuropsychiatric disorder with a gender specific risk. Although social impairment in ASD is one of the well characterized phenotypes, loneliness issue resides in patients with ASD and emerging reports show gender distribution in symptoms. Acute social isolation increases the motivation to socially interact in a gender-dependent manner, as only the male mice show increase in sociability following isolation. However, it remains to be explored whether the effects of loneliness in ASD differ between genders. Here, we used Shank2-deficient (Shank2−/−) mice, one of the animal models of ASD, to examine the sociability changes after acute social isolation. While only the male wild-type (WT) mice display increased sociability following 24-h isolation, both sexes of Shank2−/− mice show an increase in social interaction following isolation. These observations provide evidence that animal models of ASD have the sensitivity to acute social isolation and further show the motivation to socially interact.This work was supported by the National Honor Scientist Program of Korea to B.K.K. (NRF-2012R1A3A1050385) and National Research Foundation of Korea to J.E.C. (NRF-2022R1A6A3A01086593)

    Protein synthesis and degradation are required for the incorporation of modified information into the pre-existing object-location memory

    Get PDF
    Although some reports indicate that protein synthesis dependent process may be induced by updating information, the role of protein synthesis and degradation in changing the content of pre-existing memory is yet unclear. In this study, we utilized an object rearrangement task, in which partial information related to a pre-existing memory is changed, promoting memory modification. Inhibitors of both protein synthesis and protein degradation impaired adequate incorporation of the altered information, each in a distinctive way. These results indicate that protein synthesis and degradation play key roles in memory modification

    Two major gate-keepers in the self-renewal of neural stem cells: Erk1/2 and PLCγ1 in FGFR signaling

    Get PDF
    Neural stem cells are undifferentiated precursor cells that proliferate, self-renew, and give rise to neuronal and glial lineages. Understanding the molecular mechanisms underlying their self-renewal is an important aspect in neural stem cell biology. The regulation mechanisms governing self-renewal of neural stem cells and the signaling pathways responsible for the proliferation and maintenance of adult stem cells remain largely unknown. In this issue of Molecular Brain [Ma DK et al. Molecular genetic analysis of FGFR1 signaling reveals distinct roles of MAPK and PLCγ1 activation for self-renewal of adult neural stem cells. Molecular Brain 2009, 2:16], characterized the different roles of MAPK and PLCγ1 in FGFR1 signaling in the self-renewal of neural stem cells. These novel findings provide insights into basic neural stem cell biology and clinical applications of potential stem-cell-based therapy

    Null effect of antidepressants on the astrocytes-mediated proliferation of hippocampal progenitor cells in vitro

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is well known that antidepressants increase neurogenesis in the dentate gyrus of the hippocampus. The increase of neurogenesis might contribute to the behavioral effects of antidepressants. However, the mechanism by which antidepressants increase hippocampal neurogenesis is largely unknown. It has been recently reported that astroglia induce the neurogenesis of the hippocampal neural progenitor cells (NPCs). Therefore, we hypothesized that antidepressants may act on astrocytes, and this in turn induces neurogenesis of NPCs.</p> <p>Results</p> <p>To examine this hypothesis, we used two co-culture systems, i.e., a contact-independent Banker culture and a contact-dependent overlay co-culture. In both of these systems, in comparison with naïve astrocytes, antidepressant-treated astrocytes did not further increase the proliferation of NPCs.</p> <p>Conclusion</p> <p>These results suggest that astrocytes increase the proliferation of hippocampal NPCs, however, this may not be directly involved in the antidepressant-induced proliferation of NPCs.</p

    Transcriptional regulation of long-term memory in the marine snail Aplysia

    Get PDF
    Whereas the induction of short-term memory involves only covalent modifications of constitutively expressed preexisting proteins, the formation of long-term memory requires gene expression, new RNA, and new protein synthesis. On the cellular level, transcriptional regulation is thought to be the starting point for a series of molecular steps necessary for both the initiation and maintenance of long-term synaptic facilitation (LTF). The core molecular features of transcriptional regulation involved in the long-term process are evolutionally conserved in Aplysia, Drosophila, and mouse, and indicate that gene regulation by the cyclic AMP response element binding protein (CREB) acting in conjunction with different combinations of transcriptional factors is critical for the expression of many forms of long-term memory. In the marine snail Aplysia, the molecular mechanisms that underlie the storage of long-term memory have been extensively studied in the monosynaptic connections between identified sensory neuron and motor neurons of the gill-withdrawal reflex. One tail shock or one pulse of serotonin (5-HT), a modulatory transmitter released by tail shocks, produces a transient facilitation mediated by the cAMP-dependent protein kinase leading to covalent modifications in the sensory neurons that results in an enhancement of transmitter release and a strengthening of synaptic connections lasting minutes. By contrast, repeated pulses of 5-hydroxytryptamine (5-HT) induce a transcription- and translation-dependent long-term facilitation (LTF) lasting more than 24 h and trigger the activation of a family of transcription factors in the presynaptic sensory neurons including ApCREB1, ApCREB2 and ApC/EBP. In addition, we have recently identified novel transcription factors that modulate the expression of ApC/EBP and also are critically involved in LTF. In this review, we examine the roles of these transcription factors during consolidation of LTF induced by different stimulation paradigms

    DNA methylation-mediated control of learning and memory

    Get PDF
    Animals constantly receive and respond to external or internal stimuli, and these experiences are learned and memorized in their brains. In animals, this is a crucial feature for survival, by making it possible for them to adapt their behavioral patterns to the ever-changing environment. For this learning and memory process, nerve cells in the brain undergo enormous molecular and cellular changes, not only in the input-output-related local subcellular compartments but also in the central nucleus. Interestingly, the DNA methylation pattern, which is normally stable in a terminally differentiated cell and defines the cell type identity, is emerging as an important regulatory mechanism of behavioral plasticity. The elucidation of how this covalent modification of DNA, which is known to be the most stable epigenetic mark, contributes to the complex orchestration of animal behavior is a fascinating new research area. We will overview the current understanding of the mechanism of modifying the methyl code on DNA and its impact on learning and memory

    Welcome to Molecular Brain

    Get PDF
    We are delighted to announce the arrival of a brand new journal dedicated to the ever-expanding field of neuroscience. Molecular Brain is a peer-reviewed, open-access online journal that aims at publishing high quality articles as rapidly as possible. The journal will cover a broad spectrum of neuroscience ranging from molecular/cellular to behavioral/cognitive neuroscience and from basic to clinical research. Molecular Brain will publish not only research articles, but also methodology articles, editorials, reviews, and short reports. It will be a premier platform for neuroscientists to exchange their ideas with researchers from around the world to help improve our understanding of the molecular mechanisms of the brain and mind

    Loosely synchronized activation of anterior cingulate cortical neurons for scratching response during histamine-induced itch

    Get PDF
    Itch is a distinctive sensation that causes a specific affection and scratching reaction. The anterior cingulate cortex (ACC) has been linked to itch sensation in numerous studies; however, its precise function in processing pruritic inputs remains unknown. Distinguishing the precise role of the ACC in itch sensation can be challenging because of its capacity to conduct heterologous neurophysiological activities. Here, we used in vivo calcium imaging to examine how ACC neurons in free-moving mice react to pruritogenic histamine. In particular, we focused on how the activity of the ACC neurons varied before and after the scratching response. We discovered that although the change in neuronal activity was not synchronized with the scratching reaction, the overall activity of itch-responsive neurons promptly decreased after the scratching response. These findings suggest that the ACC does not directly elicit the feeling of itchiness.This work was supported by grants from the National Research Foundation (NRF) of Korea funded by the Korean government (MSIP) (NRF-2012R1A3A1050385 (B-KK), 2021R1A2C1013092 (H-GK), and 2022R1F1A1071248 (J-HL
    corecore