322 research outputs found

    Determining crop mixes for limited irrigation

    Get PDF
    Presented at the Central Plains irrigation conference on February 16-17, 2005 in Sterling, Colorado

    Citizen Science Time Domain Astronomy with Astro-COLIBRI

    Full text link
    Astro-COLIBRI is an innovative tool designed for professional astronomers to facilitate the study of transient astronomical events. Transient events - such as supernovae, gamma-ray bursts and stellar mergers - are fleeting cataclysmic phenomena that can offer profound insights into the most violent processes in the universe. Revealing their secrets requires rapid and precise observations: Astro-COLIBRI alerts its users of new transient discoveries from observatories all over the world in real-time. The platform also provides observers the details they need to make follow-up observations. Some of the transient phenomena available through Astro-COLIBRI are accessible by amateur astronomers and citizen scientists. A subset of the features dedicated to this growing group of users are highlighted here. They include the possibility of receiving only alerts on very bright events, the possibility of defining custom observer locations, as well as the calculation of optimized observation plans for searches for optical counterparts to gravitational wave events.Comment: Proceedings Atelier Pro-AM Gemini, Journ\'ees SF2A 2023. arXiv admin note: text overlap with arXiv:2308.0704

    Dynamical analysis of a weakly coupled nonlinear dielectric waveguide -- surface-plasmon model as a new type of Josephson Junction

    Full text link
    We propose that a weakly-coupled nonlinear dielectric waveguide -- surface-plasmon system can be formulated as a new type of Josephson junction. Such a system can be realized along a metal - dielectric interface where the dielectric medium hosts a nonlinear waveguide (e.g. fiber) for soliton propagation. We demonstrate that the system is in close analogy to the bosonic Josephson-Junction (BJJ) of atomic condensates at very low temperatures, yet exhibits different dynamical features. In particular, the inherently dynamic coupling parameter between soliton and surface-plasmon generates self-trapped oscillatory states at nonzero fractional populations with zero and π\pi time averaged phase difference. The salient features of the dynamics are presented in the phase space.Comment: 9 pages, 7 figure

    Quantification of Thermal Oxidation in Metallic Glass Powder using Ultra-small Angle X-ray Scattering

    Get PDF
    In this paper, the composition, structure, morphology and kinetics of evolution during isothermal oxidation of Fe 48Cr 15Mo 14Y 2C 15B 6 metallic glass powder in the supercooled region are investigated by an integrated ex-situ and in-situ characterization and modelling approach. Raman and X-ray diffraction spectra established that oxidation yielded a hierarchical structure across decreasing length scales. At larger scale, Fe 2O 3 grows as a uniform shell over the powder core. This shell, at smaller scale, consists of multiple grains. Ultra-small angle X-ray scattering intensity acquired during isothermal oxidation of the powder over a wide Q-range delineated direct quantification of oxidation behavior. The hierarchical structure was employed to construct a scattering model that was fitted to the measured intensity distributions to estimate the thickness of the oxide shell. The relative gain in mass during oxidation, computed theoretically from this model, relatively underestimated that measured in practice by a thermogravimetric analyzer due to the distribution in sizes of the particles. As a whole, this paper introduces the first direct quantification of oxidation in metallic glass powder by ultra-small angle X-ray scattering. It establishes novel experimental environments that can potentially unfold new paradigms of research into a wide spectrum of interfacial reactions in powder materials at elevated temperatures

    Self-consistent local-equilibrium model for density profile and distribution of dissipative currents in a Hall bar under strong magnetic fields

    Full text link
    Recent spatially resolved measurements of the electrostatic-potential variation across a Hall bar in strong magnetic fields, which revealed a clear correlation between current-carrying strips and incompressible strips expected near the edges of the Hall bar, cannot be understood on the basis of existing equilibrium theories. To explain these experiments, we generalize the Thomas-Fermi--Poisson approach for the self-consistent calculation of electrostatic potential and electron density in {\em total} thermal equilibrium to a {\em local equilibrium} theory that allows to treat finite gradients of the electrochemical potential as driving forces of currents in the presence of dissipation. A conventional conductivity model with small values of the longitudinal conductivity for integer values of the (local) Landau-level filling factor shows that, in apparent agreement with experiment, the current density is localized near incompressible strips, whose location and width in turn depend on the applied current.Comment: 9 pages, 7 figure

    A perceptual model of motion quality for rendering with adaptive refresh-rate and resolution

    Get PDF
    Limited GPU performance budgets and transmission bandwidths mean that real-time rendering often has to compromise on the spatial resolution or temporal resolution (refresh rate). A common practice is to keep either the resolution or the refresh rate constant and dynamically control the other variable. But this strategy is non-optimal when the velocity of displayed content varies. To find the best trade-off between the spatial resolution and refresh rate, we propose a perceptual visual model that predicts the quality of motion given an object velocity and predictability of motion. The model considers two motion artifacts to establish an overall quality score: non-smooth (juddery) motion, and blur. Blur is modeled as a combined effect of eye motion, finite refresh rate and display resolution. To fit the free parameters of the proposed visual model, we measured eye movement for predictable and unpredictable motion, and conducted psychophysical experiments to measure the quality of motion from 50 Hz to 165 Hz. We demonstrate the utility of the model with our on-the-fly motion-adaptive rendering algorithm that adjusts the refresh rate of a G-Sync-capable monitor based on a given rendering budget and observed object motion. Our psychophysical validation experiments demonstrate that the proposed algorithm performs better than constant-refresh-rate solutions, showing that motion-adaptive rendering is an attractive technique for driving variable-refresh-rate displays.</jats:p

    Training deep neural density estimators to identify mechanistic models of neural dynamics

    Get PDF
    Mechanistic modeling in neuroscience aims to explain observed phenomena in terms of underlying causes. However, determining which model parameters agree with complex and stochastic neural data presents a significant challenge. We address this challenge with a machine learning tool which uses deep neural density estimators—trained using model simulations—to carry out Bayesian inference and retrieve the full space of parameters compatible with raw data or selected data features. Our method is scalable in parameters and data features and can rapidly analyze new data after initial training. We demonstrate the power and flexibility of our approach on receptive fields, ion channels, and Hodgkin–Huxley models. We also characterize the space of circuit configurations giving rise to rhythmic activity in the crustacean stomatogastric ganglion, and use these results to derive hypotheses for underlying compensation mechanisms. Our approach will help close the gap between data-driven and theory-driven models of neural dynamics

    Electrical Brain Responses in Language-Impaired Children Reveal Grammar-Specific Deficits

    Get PDF
    Background: Scientific and public fascination with human language have included intensive scrutiny of language disorders as a new window onto the biological foundations of language and its evolutionary origins. Specific language impairment (SLI), which affects over 7% of children, is one such disorder. SLI has received robust scientific attention, in part because of its recent linkage to a specific gene and loci on chromosomes and in part because of the prevailing question regarding the scope of its language impairment: Does the disorder impact the general ability to segment and process language or a specific ability to compute grammar? Here we provide novel electrophysiological data showing a domain-specific deficit within the grammar of language that has been hitherto undetectable through behavioural data alone. Methods and Findings: We presented participants with Grammatical(G)-SLI, age-matched controls, and younger child and adult controls, with questions containing syntactic violations and sentences containing semantic violations. Electrophysiological brain responses revealed a selective impairment to only neural circuitry that is specific to grammatical processing in G-SLI. Furthermore, the participants with G-SLI appeared to be partially compensating for their syntactic deficit by using neural circuitry associated with semantic processing and all non-grammar-specific and low-level auditory neural responses were normal. Conclusions: The findings indicate that grammatical neural circuitry underlying language is a developmentally unique system in the functional architecture of the brain, and this complex higher cognitive system can be selectively impaired. The findings advance fundamental understanding about how cognitive systems develop and all human language is represented and processed in the brain
    • …
    corecore