24 research outputs found

    EXPERIMENTAL STUDY OF MULTIPACTOR SUPPRESSION IN DIELECTRIC MATERIALS

    No full text
    International audienceA novel coaxial resonator to investigate two-surface multipactor discharges on metal and dielectric surfaces in the gap region under vacuum conditions (~10-8 mbar) has been developed and tested. The resonator is ~ 100 mm in length with an outer diameter of ~ 60 mm (internal dimensions). A pulsed RF source delivers up to 30 W average power over a wide frequency range 650-900 MHz to the RF resonator. The incident and reflected RF signals are monitored by calibrated RF diodes. An electron probe provides temporal measurements of the multipacting electron current with respect to the RF pulses. In this paper we compare and contrast the results from the RF power tests of the alumina (97.6% Al2O3) and quartz samples without a coating, “the non-coated samples” and the Alumina and quartz samples with a TiN coating in order to evaluate a home made sputtered titanium nitride (TiN) thin layers as a Multipactor suppressor. The effectiveness of this method is presented and discussed in the paper

    Optimisation of the PERLE Injector

    No full text
    International audienceThe injector for PERLE, a proposed electron Energy Recovery Linac (ERL) test facility for the LHeC and FCC-eh projects, is intended to deliver 500 pC bunches at a repetition rate of 40.1 MHz for a total beam current of 20 mA. These bunches must have a bunch length of 3 mm rms and an energy of 7 MeV at the entrance to the first linac pass while simultaneously achieving a transverse emittance of less than 6 mm mrad. The injector is based around a DC photocathode electron gun, followed by a focusing and normal conducting bunching section, a booster with 5 independently controllable SRF cavities and a merger into the main ERL. A design for this injector from the photocathode to the exit of the booster is presented. This design was simulated using ASTRA for the beam dynamics simulations and optimized using the many objective optimization algorithm NSGAIII. The use of NSGAIII allows more than three beam parameters to be optimised simultaneously and the trade-offs between them to be explored

    Conceptual Design of the PERLE Injector

    No full text
    International audienceEnergy Recovery Linacs such as PERLE require high average current high brightness beams. This sets particular requirements on the kind of injectors that they can use as the injectors must be capable of producing bunches at MHz repetition rates, compressing the bunches to the specified value and transporting those bunches while they are still in the space charge dominated regime into the main ERL all while keeping the emittance low. In particular, PERLE will require a 20 mA beam consisting of 500 pC bunches with a repetition rate of 40 MHz. These bunches will be required to have rms lengths of 3mm, a total beam energy of 7 MeV, appropriate Twiss parameters to match them to the main loop and transverse emittances of < 6 mm mrad. In this paper, a DC gun based injector capable of meeting this specification will be presented with beam dynamics simulation showing the behaviour of the beam from the photocathode to the exit of the first main linac pass. The beam dynamics challenges will be discussed in terms of both the transverse emittance growth and the sources of non-linearity in the longitudinal phase space

    Re-optimisation of the ALICE Gun Upgrade Design for the 500-pC Bunch Charge Requirements of PERLE

    No full text
    International audienceThe injector for PERLE, a planned ERL test facility, must be capable of delivering 500 pC bunches at a repetition rate of 40.1 MHz to provide a beam with 20 mA average current with a projected rms emittance of less than 6 mm mrad. This must be achieved at two different operational voltages 350 kV and 220 kV for unpolarised and polarised operation respectively. The PERLE injector will be based on an upgrade of a DC photocathode electron gun operated previously at ALICE ERL at Daresbury. The upgrade will add a load lock system for photocathode interchange. This paper presents the results of a re-optimisation of the electrode system as ALICE operated with a bunch charge of around 80 pC while PERLE needs a bunch charge of 500 pC. This re-optimisation was done using the many-objective genetic algorithm NSGAIII to minimise both the slice emittance and transverse beam size for both required operational voltages

    Power Coupler Design for the LUCRECE Project

    No full text
    International audienceThe LUCRECE project aims at developing an elementary RF system (cavity, power source, LLRF and controls) suitable for continuous (CW) operation at 1.3 GHz. This effort is made in the framework of the advanced and compact FEL project LUNEX5 (free electron Laser Using a New accelerator for the Exploitation of X-ray radiation of 5th generation), using superconducting linac technology for high repetition rate and multi-user operation (http://www.lunex5.com). In this context, based on its large experience on coupler design and RF conditioning, LAL Laboratory is in charge of the design and the fabrication of RF couplers that could operate at up to 15-20 kW in CW mode. For this purpose, couplers based on CORNELL 65kW CW couplers (RF power couplers for the Cornell ERL injector) are under consideration and will be adapted to the LUCRECE needs. Electromagnetic simulations and associated thermal heating will be discussed. Methods to decrease the thermal impact will be considered

    Complete Study of the Multipactor Phenomenon for the MYRRHA 80 kW CW RF Couplers

    No full text
    International audienceMYRRHA [1] (Multi Purpose Hybrid Reactor for High Tech Applications) is an Accelerator Driven System (ADS) project. Its superconducting linac will provide a 600 MeV - 4 mA proton beam. The first project phase based on a 100 MeV linac is launched. The Radio-Frequency (RF) couplers have been designed to handle 80 kW CW (Continuous Wave) at 352.2 MHz. This paper describes the multipacting studies on couplers

    Modeling of standing wave RF cavities for tracking through multi-pass energy recovery linac

    No full text
    International audienceShort bunches, high current and multiple linac pass are all characteristics of Energy Recovery Linacs (ERLs), which may result in collective effects. They in turn, may affect the beam, degrading its quality, or even yield to instabilities causing a beam loss. To study and mitigate these effects one needs a numerical simulation code, that can take into account both the collective effects, as well as, particular ERL features, such as a multi-turn design that does not reach a steady state or the multiple passages of the beam through Radio-Frequency (RF) cavities at different energies. CODAL [1], a code developed by SOLEIL in collaboration with IJCLab, enables such studies. It is a 6 dimensional (6D) tracking code applying 'kicks' based on the integration of the local Hamiltonian for each element of the lattice. It is also capable of simulating space charge, wakefields and coherent synchrotron radiation.However, to correctly take into account the ERL dynamics, an upgrade had to be made to include the effect of a standing wave RF cavity in 6D. In this paper, we will concentrate on the implementation and benchmarking (with DESY’s tracking code ASTRA [2]) of both the longitudinal and the transverse models (by J.B. Rosenzweig and L. Serafini [3]), which we use to carry out tracking of fully analytical 6D RF cavity

    Optimization of a High Bunch Charge ERL Injection Merger for PERLE

    No full text
    International audienceDelivery of high charge electron bunches into the main loop of an ERL (energy recovery linac) while preserving the emittance is challenging. This is because at the typical injection momentum, space charge forces still have a significant effect on the beam dynamics. In this work we consider the design of the merger for PERLE, an ERL test facility to be based at IJCLab in France. Previous simulations have shown that the baseline DC gun based injector can achieve the required emittance at the booster linac exit. The quality of the 500 pC bunches must then be preserved with space charge through the merger at total beam energy of 7 MeV keeping the emittance below 6 mm mrad. The beam dynamics in the merger were simulated using the code OPAL and optimised using a genetic algorithm. Three possible merger schemes were investigated. The goal of the optimisation was to minimise the emittance growth while also achieving the required Twiss parameters to match onto the spreader at the main linac exit. A three dipole solution is then examined in more detail

    Power Coupler Design for the LUCRECE Project

    No full text
    International audienceThe LUCRECE project aims at developing an elementary RF system (cavity, power source, LLRF and controls) suitable for continuous (CW) operation at 1.3 GHz. This effort is made in the framework of the advanced and compact FEL project LUNEX5 (free electron Laser Using a New accelerator for the Exploitation of X-ray radiation of 5th generation), using superconducting linac technology for high repetition rate and multi-user operation (www.lunex5.com). In this context, based on its large experience on coupler design and RF conditioning, LAL Laboratory is in charge of the design and the fabrication of RF couplers that could operate at up to 15-20 kW in CW mode. For this purpose, geometry based on CORNELL 65kW CW couplers will me modified to fulfil the LCLS2 type cavity with the high necessary coupling level. Electromagnetic simulations and optimisation and associated thermal heating will be discussed. Methods to decrease the thermal impact, and strategy for RF conditioning will be considered

    Improved Study of the Multipactor Phenomenon for the MYRRHA 80 kW CW RF Couplers

    No full text
    International audienceMYRRHA (Multi Purpose Hybrid Reactor for High Tech Applications) is an Accelerator Driven System (ADS) project. Its superconducting linac will provide a 600 MeV - 4 mA proton beam. The first project phase based on a 100 MeV linac is launched. The Radio-Frequency (RF) couplers have been designed to handle 80 kW CW (Continuous Wave) at 352.2 MHz. This paper describes the multipactor studies on the coupler when it does not work in the nominal configuration without reflected power
    corecore