3,558 research outputs found

    Composition-Dependent Dielectric Properties of DMF-Water Mixtures by Molecular Dynamics Simulations

    Get PDF
    In this paper, we study the dielectric properties of water-N,N dimethylformamide (DMF) mixtures over the whole composition range using a molecular dynamics (MD) simulation. The static and microwave frequency-dependent dielectric properties of the mixtures are calculated from MD trajectories of at least 2 ns length and compared to those of available measurements. We find that the short-ranged structural correlation between neighboring water and DMF molecules strongly influences the static dielectric properties of mixtures. In terms of the dynamics, we report time correlation functions for the dipole densities of mixtures and find that their long-time behavior can be reasonably described by biexponential decays, which means the dielectric relaxations of these mixtures are governed by complex multitimescale mechanisms of rotational diffusion. The dipole density relaxation time is a non-monotonic function of composition passing through a maximum around 0.5 mole fraction DMF, in agreement with the measured main dielectric relaxation time of mixtures

    NeuroQuantify -- An Image Analysis Software for Detection and Quantification of Neurons and Neurites using Deep Learning

    Full text link
    The segmentation of cells and neurites in microscopy images of neuronal networks provides valuable quantitative information about neuron growth and neuronal differentiation, including the number of cells, neurites, neurite length and neurite orientation. This information is essential for assessing the development of neuronal networks in response to extracellular stimuli, which is useful for studying neuronal structures, for example, the study of neurodegenerative diseases and pharmaceuticals. However, automatic and accurate analysis of neuronal structures from phase contrast images has remained challenging. To address this, we have developed NeuroQuantify, an open-source software that uses deep learning to efficiently and quickly segment cells and neurites in phase contrast microscopy images. NeuroQuantify offers several key features: (i) automatic detection of cells and neurites; (ii) post-processing of the images for the quantitative neurite length measurement based on segmentation of phase contrast microscopy images, and (iii) identification of neurite orientations. The user-friendly NeuroQuantify software can be installed and freely downloaded from GitHub https://github.com/StanleyZ0528/neural-image-segmentation

    Spatial and temporal representativeness of point measurements for nitrogen dioxide pollution levels in cities

    Get PDF
    In many cities around the world the overall air quality is improving, but at the same time nitrogen dioxide (NO2) trends show stagnating values and in many cases could not be reduced below air quality standards recommended by the World Health Organization (WHO). Many large cities have built monitoring stations to continuously measure different air pollutants. While most stations follow defined rules in terms of measurement height and distance to traffic emissions, the question remains of how representative are those point measurements for the city-wide air quality. The question of the spatial coverage of a point measurement is important because it defines the area of influence and coverage of monitoring networks, determines how to assimilate monitoring data into model simulations or compare to satellite data with a coarser resolution, and is essential to assess the impact of the acquired data on public health. In order to answer this question, we combined different measurement data sets consisting of path-averaging remote sensing data and in situ point measurements in stationary and mobile setups from a measurement campaign that took place in Munich, Germany, in June and July 2016. We developed an algorithm to strip temporal from spatial patterns in order to construct a consistent NO2 pollution map for Munich. Continuous long-path differential optical absorption spectroscopy (LP DOAS) measurements were complemented with mobile cavity-enhanced (CE) DOAS, chemiluminescence (CL) and cavity attenuated phase shift (CAPS) instruments and were compared to monitoring stations and satellite data. In order to generate a consistent composite map, the LP DOAS diurnal cycle has been used to normalize for the time of the day dependency of the source patterns, so that spatial and temporal patterns can be analyzed separately. The resulting concentration map visualizes pollution hot spots at traffic junctions and tunnel exits in Munich, providing insights into the strong spatial variations. On the other hand, this database is beneficial to the urban planning and the design of control measures of environment pollution. Directly comparing on-street mobile measurements in the vicinity of monitoring stations resulted in a difference of 48 %. For the extrapolation of the monitoring station data to street level, we determined the influence of the measuring height and distance to the street. We found that a measuring height of 4 m, at which the Munich monitoring stations measure, results in 16 % lower average concentrations than a measuring height of 1.5 m, which is the height of the inlet of our mobile measurements and a typical pedestrian breathing height. The horizontal distance of most stations to the center of the street of about 6 m also results in an average reduction of 13 % compared to street level concentration. A difference of 21 % in the NO2 concentrations remained, which could be an indication that city-wide measurements are needed for capturing the full range and variability of concentrations for assessing pollutant exposure and air quality in cities
    corecore