48 research outputs found
The effects of over-expression of the FK506-binding protein FKBP12.6 on K+ currents in adult rabbit ventricular myocytes
This study examines the effects of the intracellular protein FKBP12.6 on action potential and associated K+ currents in isolated adult rabbit ventricular cardiomyocytes. FKBP12.6 was over-expressed by ~6 times using a recombinant adenovirus coding for human FKBP12.6. This over-expression caused prolongation of action potential duration (APD) by ~30%. The amplitude of the transient outward current (Ito) was unchanged, but rate of inactivation at potentials positive to +40 mV was increased. FKBP12.6 over-expression decreased the amplitude of the inward rectifier current (IK1) by ~25% in the voltage range −70 to −30 mV, an effect prevented by FK506 or lowering intracellular [Ca2+] below 1 nM. Over-expression of an FKBP12.6 mutant, which cannot bind calcineurin, prolonged APD and affected Ito and IK1 in a similar manner to wild-type protein. These data suggest that FKBP12.6 can modulate APD via changes in IK1 independently of calcineurin binding, suggesting that FKBP12.6 may affect APD by direct interaction with IK1
Constant-Round Group Key Exchange from the Ring-LWE Assumption
Group key-exchange protocols allow a set of N parties to agree on a shared, secret key by communicating over a public network. A number of solutions to this problem have been proposed over the years, mostly based on variants of Diffie-Hellman (two-party) key exchange. There has been relatively little work, however, looking at candidate post-quantum group key-exchange protocols.
Here, we propose a constant-round protocol for unauthenticated group key exchange (i.e., with security against a passive eavesdropper) based on the hardness of the Ring-LWE problem. By applying the Katz-Yung compiler using any post-quantum signature scheme, we obtain a (scalable) protocol for authenticated group key exchange with post-quantum security. Our protocol is constructed by generalizing the Burmester-Desmedt protocol to the Ring-LWE setting, which requires addressing several technical challenges
Crosstalk between Mitochondrial and Sarcoplasmic Reticulum Ca2+ Cycling Modulates Cardiac Pacemaker Cell Automaticity
Mitochondria dynamically buffer cytosolic Ca(2+) in cardiac ventricular cells and this affects the Ca(2+) load of the sarcoplasmic reticulum (SR). In sinoatrial-node cells (SANC) the SR generates periodic local, subsarcolemmal Ca(2+) releases (LCRs) that depend upon the SR load and are involved in SANC automaticity: LCRs activate an inward Na(+)-Ca(2+) exchange current to accelerate the diastolic depolarization, prompting the ensemble of surface membrane ion channels to generate the next action potential (AP).To determine if mitochondrial Ca(2+) (Ca(2+) (m)), cytosolic Ca(2+) (Ca(2+) (c))-SR-Ca(2+) crosstalk occurs in single rabbit SANC, and how this may relate to SANC normal automaticity.Inhibition of mitochondrial Ca(2+) influx into (Ru360) or Ca(2+) efflux from (CGP-37157) decreased [Ca(2+)](m) to 80 ± 8% control or increased [Ca(2+)](m) to 119 ± 7% control, respectively. Concurrent with inhibition of mitochondrial Ca(2+) influx or efflux, the SR Ca(2+) load, and LCR size, duration, amplitude and period (imaged via confocal linescan) significantly increased or decreased, respectively. Changes in total ensemble LCR Ca(2+) signal were highly correlated with the change in the SR Ca(2+) load (r(2) = 0.97). Changes in the spontaneous AP cycle length (Ru360, 111 ± 1% control; CGP-37157, 89 ± 2% control) in response to changes in [Ca(2+)](m) were predicted by concurrent changes in LCR period (r(2) = 0.84).A change in SANC Ca(2+) (m) flux translates into a change in the AP firing rate by effecting changes in Ca(2+) (c) and SR Ca(2+) loading, which affects the characteristics of spontaneous SR Ca(2+) release
Effects of muscarinic receptor stimulation on Ca2+ transient, cAMP production and pacemaker frequency of rabbit sinoatrial node cells
We investigated the contribution of the intracellular calcium (Cai2+) transient to acetylcholine (ACh)-mediated reduction of pacemaker frequency and cAMP content in rabbit sinoatrial nodal (SAN) cells. Action potentials (whole cell perforated patch clamp) and Cai2+ transients (Indo-1 fluorescence) were recorded from single isolated rabbit SAN cells, whereas intracellular cAMP content was measured in SAN cell suspensions using a cAMP assay (LANCE®). Our data show that the Cai2+ transient, like the hyperpolarization-activated “funny current” (If) and the ACh-sensitive potassium current (IK,ACh), is an important determinant of ACh-mediated pacemaker slowing. When If and IK,ACh were both inhibited, by cesium (2 mM) and tertiapin (100 nM), respectively, 1 μM ACh was still able to reduce pacemaker frequency by 72%. In these If and IK,ACh-inhibited SAN cells, good correlations were found between the ACh-mediated change in interbeat interval and the ACh-mediated change in Cai2+ transient decay (r2 = 0.98) and slow diastolic Cai2+ rise (r2 = 0.73). Inhibition of the Cai2+ transient by ryanodine (3 μM) or BAPTA-AM (5 μM) facilitated ACh-mediated pacemaker slowing. Furthermore, ACh depressed the Cai2+ transient and reduced the sarcoplasmic reticulum (SR) Ca2+ content, all in a concentration-dependent fashion. At 1 μM ACh, the spontaneous activity and Cai2+ transient were abolished, but completely recovered when cAMP production was stimulated by forskolin (10 μM) and IK,ACh was inhibited by tertiapin (100 nM). Also, inhibition of the Cai2+ transient by ryanodine (3 μM) or BAPTA-AM (25 μM) exaggerated the ACh-mediated inhibition of cAMP content, indicating that Cai2+ affects cAMP production in SAN cells. In conclusion, muscarinic receptor stimulation inhibits the Cai2+ transient via a cAMP-dependent signaling pathway. Inhibition of the Cai2+ transient contributes to pacemaker slowing and inhibits Cai2+-stimulated cAMP production. Thus, we provide functional evidence for the contribution of the Cai2+ transient to ACh-induced inhibition of pacemaker activity and cAMP content in rabbit SAN cells
The ALICE experiment at the CERN LHC
ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 161626 m3 with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008