33 research outputs found

    Expression of Snail2 in long bone osteosarcomas correlates with tumour malignancy

    Get PDF
    Snail2 is a marker of malignancy in epithelial tumours; however, in sarcomas, it is not known if this protein is present. Here we examine the expression of Snail2 in one type of sarcoma, osteosarcoma, and explore its relationship to tumour grade, subtype and anatomical location in cases of long bone and cranial bone osteosarcoma. Long bone osteosarcomas typically have a much greater metastatic capability and a poorer prognosis. We find that Snail2 is expressed in the three main subtypes of long bone osteosarcoma—osteoblastic, chondroblastic and fibroblastic. Regression analysis showed that Snail 2 expression was statistically correlated with tumour grade (p = 0.014) in all of these subtypes. Snail2 was only expressed in high-grade cranial bone osteosarcomas, suggesting a link between Snail2 expression and metastasis. This is the first time Snail2 has been associated with any sarcoma, and this study shows that Snail2 may be a useful prognostic marker for this disease

    Assessment of Eurocode 5 charring rate calculation methods

    Full text link
    The base hypothesis for the assessment of fire resistance of timber structures by simple calculation models is that for temperatures above 300 ºC, timber is no longer able to sustain any load. Consequently, the determination of the location of the 300 ºC isotherm, the charring depth, is decisive for the result of fire resistance calculation methods. Charring rate of timber is dependent of numerous factors, such as wood species (density, permeability or composition), moisture or direction of burning (along or across the grain). Eurocode 5, Part 1-2, presents several methods for the calculation of fire resistance of timber structures that are divided into simplified and advanced. In this paper simplified and advanced methods are compared regarding the calculation of the charring depth and residual cross section strength. Finite element simulations have been performed, employing the proposed timber properties of Eurocode 5 using finite element code SAFIR. The influence of parameters such as timber density and moisture has been investigated. The results obtained with finite element calculations were then compared with Eurocode 5 simplified models. Some inconsistencies between methods have been observed. This paper presents some proposals to overcome some of the inconsistencies as well as to extend the applicability of the models
    corecore