100 research outputs found
Intracellular Water Exchange for Measuring the Dry Mass, Water Mass and Changes in Chemical Composition of Living Cells
We present a method for direct non-optical quantification of dry mass, dry density and water mass of single living cells in suspension. Dry mass and dry density are obtained simultaneously by measuring a cell’s buoyant mass sequentially in an H[subscript 2]O-based fluid and a D[subscript 2]O-based fluid. Rapid exchange of intracellular H[subscript 2]O for D[subscript 2]O renders the cell’s water content neutrally buoyant in both measurements, and thus the paired measurements yield the mass and density of the cell’s dry material alone. Utilizing this same property of rapid water exchange, we also demonstrate the quantification of intracellular water mass. In a population of E. coli, we paired these measurements to estimate the percent dry weight by mass and volume. We then focused on cellular dry density – the average density of all cellular biomolecules, weighted by their relative abundances. Given that densities vary across biomolecule types (RNA, DNA, protein), we investigated whether we could detect changes in biomolecular composition in bacteria, fungi, and mammalian cells. In E. coli, and S. cerevisiae, dry density increases from stationary to exponential phase, consistent with previously known increases in the RNA/protein ratio from up-regulated ribosome production. For mammalian cells, changes in growth conditions cause substantial shifts in dry density, suggesting concurrent changes in the protein, nucleic acid and lipid content of the cell.National Cancer Institute (U.S.). Physical Sciences-Oncology Center (U54CA143874)National Institutes of Health (U.S.) (Center for Cell Division Process Grant P50GM6876)National Institutes of Health (U.S.) (Contract R01CA170592)United States. Army Research Office (Institute for Collaborate Biotechnologies Contract W911NF-09-D-0001
Recommended from our members
The use of phylogeny to interpret cross-cultural patterns in plant use and guide medicinal plant discovery: an example from Pterocarpus (Leguminosae)
The study of traditional knowledge of medicinal plants has led to discoveries that have helped combat diseases and improve healthcare. However, the development of quantitative measures that can assist our quest for new medicinal plants has not greatly advanced in recent years. Phylogenetic tools have entered many scientific fields in the last two decades to provide explanatory power, but have been overlooked in ethnomedicinal studies. Several studies show that medicinal properties are not randomly distributed in plant phylogenies, suggesting that phylogeny shapes ethnobotanical use. Nevertheless, empirical studies that explicitly combine ethnobotanical and phylogenetic information are scarce.In this study, we borrowed tools from community ecology phylogenetics to quantify significance of phylogenetic signal in medicinal properties in plants and identify nodes on phylogenies with high bioscreening potential. To do this, we produced an ethnomedicinal review from extensive literature research and a multi-locus phylogenetic hypothesis for the pantropical genus Pterocarpus (Leguminosae: Papilionoideae). We demonstrate that species used to treat a certain conditions, such as malaria, are significantly phylogenetically clumped and we highlight nodes in the phylogeny that are significantly overabundant in species used to treat certain conditions. These cross-cultural patterns in ethnomedicinal usage in Pterocarpus are interpreted in the light of phylogenetic relationships.This study provides techniques that enable the application of phylogenies in bioscreening, but also sheds light on the processes that shape cross-cultural ethnomedicinal patterns. This community phylogenetic approach demonstrates that similar ethnobotanical uses can arise in parallel in different areas where related plants are available. With a vast amount of ethnomedicinal and phylogenetic information available, we predict that this field, after further refinement of the techniques, will expand into similar research areas, such as pest management or the search for bioactive plant-based compounds
End-to-end automated microfluidic platform for synthetic biology: from design to functional analysis
Specific heat of 2D interacting Majorana fermions from holography
Majorana fermions are a fascinating medium for discovering new phases of matter. However, the standard analytical tools are very limited in probing the non-perturbative aspects of interacting Majoranas in more than one dimensions. Here, we employ the holographic correspondence to determine the specific heat of a two-dimensional interacting gapless Majorana system. To perform our analysis we first describe the interactions in terms of a pseudo-scalar torsion field. We then allow fluctuations in the background curvature thus identifying our model with a (2 + 1)-dimensional Anti-de Sitter (AdS) geometry with torsion. By employing the AdS/CFT correspondence, we show that the interacting model is dual to a (1 + 1)-dimensional conformal field theory (CFT) with central charge that depends on the interaction coupling. This non-perturbative result enables us to determine the effect interactions have in the specific heat of the system at the zero temperature limit
- …