161 research outputs found

    Improved Measurement of the Pseudoscalar Decay Constant fDsf_{D_{s}}

    Get PDF
    We present a new determination of the Ds decay constant, f_{Ds} using 5 million continuum charm events obtained with the CLEO II detector. Our value is derived from our new measured ratio of widths for Ds -> mu nu/Ds -> phi pi of 0.173+/- 0.021 +/- 0.031. Taking the branching ratio for Ds -> phi pi as (3.6 +/- 0.9)% from the PDG, we extract f_{Ds} = (280 +/- 17 +/- 25 +/- 34){MeV}. We compare this result with various model calculations.Comment: 23 page postscript file, postscript file also available through http://w4.lns.cornell.edu/public/CLN

    First Observation of Ο„β†’3πηντ\tau\to 3\pi\eta\nu_{\tau} and Ο„β†’f1πντ\tau\to f_{1}\pi\nu_{\tau} Decays

    Full text link
    We have observed new channels for Ο„\tau decays with an Ξ·\eta in the final state. We study 3-prong tau decays, using the Ξ·β†’Ξ³Ξ³\eta\to\gamma\gamma and \eta\to 3\piz decay modes and 1-prong decays with two \piz's using the Ξ·β†’Ξ³Ξ³\eta\to\gamma\gamma channel. The measured branching fractions are \B(\tau^{-}\to \pi^{-}\pi^{-}\pi^{+}\eta\nu_{\tau}) =(3.4^{+0.6}_{-0.5}\pm0.6)\times10^{-4} and \B(\tau^{-}\to \pi^{-}2\piz\eta\nu_{\tau} =(1.4\pm0.6\pm0.3)\times10^{-4}. We observe clear evidence for f1→ηππf_1\to\eta\pi\pi substructure and measure \B(\tau^{-}\to f_1\pi^{-}\nu_{\tau})=(5.8^{+1.4}_{-1.3}\pm1.8)\times10^{-4}. We have also searched for Ξ·β€²(958)\eta'(958) production and obtain 90% CL upper limits \B(\tau^{-}\to \pi^{-}\eta'\nu_\tau)<7.4\times10^{-5} and \B(\tau^{-}\to \pi^{-}\piz\eta'\nu_\tau)<8.0\times10^{-5}.Comment: 11 page postscript file, postscript file also available through http://w4.lns.cornell.edu/public/CLN

    Search for the Decays B^0 -> D^{(*)+} D^{(*)-}

    Full text link
    Using the CLEO-II data set we have searched for the Cabibbo-suppressed decays B^0 -> D^{(*)+} D^{(*)-}. For the decay B^0 -> D^{*+} D^{*-}, we observe one candidate signal event, with an expected background of 0.022 +/- 0.011 events. This yield corresponds to a branching fraction of Br(B^0 -> D^{*+} D^{*-}) = (5.3^{+7.1}_{-3.7}(stat) +/- 1.0(syst)) x 10^{-4} and an upper limit of Br(B^0 -> D^{*+} D^{*-}) D^{*\pm} D^\mp and B^0 -> D^+ D^-, no significant excess of signal above the expected background level is seen, and we calculate the 90% CL upper limits on the branching fractions to be Br(B^0 -> D^{*\pm} D^\mp) D^+ D^-) < 1.2 x 10^{-3}.Comment: 12 page postscript file also available through http://w4.lns.cornell.edu/public/CLNS, submitted to Physical Review Letter

    ΛΛˉ\Lambda\bar{\Lambda} Production in Two-Photon Interactions at CLEO

    Full text link
    Using the CLEO detector at the Cornell e+eβˆ’e^+e^- storage ring, CESR, we study the two-photon production of ΛΛˉ\Lambda \bar{\Lambda}, making the first observation of γγ→ΛΛˉ\gamma \gamma \to \Lambda \bar{\Lambda}. We present the cross-section for γγ→ΛΛˉ \gamma \gamma \to \Lambda \bar{\Lambda} as a function of the Ξ³Ξ³\gamma \gamma center of mass energy and compare it to that predicted by the quark-diquark model.Comment: 10 pages, postscript file also available through http://w4.lns.cornell.edu/public/CLN

    Observation of the Decay Ds+→ωπ+D_{s}^{+}\to \omega\pi^{+}

    Full text link
    Using e+e- annihilation data collected by the CLEO~II detector at CESR, we have observed the decay Ds+ to omega pi+. This final state may be produced through the annihilation decay of the Ds+, or through final state interactions. We find a branching ratio of [Gamma(Ds+ to omega pi+)/Gamma(Ds+ to eta pi+)]=0.16+-0.04+-0.03, where the first error is statistical and the second is systematic.Comment: 9 pages, postscript file also available through http://w4.lns.cornell.edu/public/CLN

    Tissue engineering of functional articular cartilage: the current status

    Get PDF
    Osteoarthritis is a degenerative joint disease characterized by pain and disability. It involves all ages and 70% of people aged >65 have some degree of osteoarthritis. Natural cartilage repair is limited because chondrocyte density and metabolism are low and cartilage has no blood supply. The results of joint-preserving treatment protocols such as debridement, mosaicplasty, perichondrium transplantation and autologous chondrocyte implantation vary largely and the average long-term result is unsatisfactory. One reason for limited clinical success is that most treatments require new cartilage to be formed at the site of a defect. However, the mechanical conditions at such sites are unfavorable for repair of the original damaged cartilage. Therefore, it is unlikely that healthy cartilage would form at these locations. The most promising method to circumvent this problem is to engineer mechanically stable cartilage ex vivo and to implant that into the damaged tissue area. This review outlines the issues related to the composition and functionality of tissue-engineered cartilage. In particular, the focus will be on the parameters cell source, signaling molecules, scaffolds and mechanical stimulation. In addition, the current status of tissue engineering of cartilage will be discussed, with the focus on extracellular matrix content, structure and its functionality

    Management of osteoporosis in patients hospitalized for hip fractures

    Get PDF
    Hip fracture is associated with high morbidity, mortality, and economic burden worldwide. It is also a major risk factor for a subsequent fracture. A literature search on the management of osteoporosis in patients with hip fracture was performed on the Medline database. Only one clinical drug trial was conducted in patients with a recent hip fracture. Further studies that specifically address post-fracture management of hip fracture are needed. The efficacy of anti-osteoporosis medication in older individuals and those at high risk of fall is reviewed in this paper. Adequate nutrition is vital for bone health and to prevent falls, especially in malnourished patients. Protein, calcium, and vitamin D supplementation is associated with increased hip BMD and a reduction in falls. Fall prevention, exercise, and balance training incorporated in a comprehensive rehabilitation program are essential to improve functional disability and survival. Exclusion of secondary causes of osteoporosis and treatment of coexistent medical conditions are also vital. Such a multidisciplinary team approach to the management of hip fracture patients is associated with a better clinical outcome. Although hip fracture is the most serious of all fractures, osteoporosis management should be prioritized to prevent deterioration of health and occurrence of further fracture
    • …
    corecore