89 research outputs found

    Visualization and unsupervised clustering of emphysema progression using t-SNE analysis of longitudinal CT images and SNPs

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is predicted to become the third leading cause of death worldwide by 2030. A longitudinal study using CT scans of COPD is useful to assess the changes in structural abnormalities. In this study, we performed visualization and unsupervised clustering of emphysema progression using t-distributed stochastic neighbor embedding (t-SNE) analysis of longitudinal CT images, smoking history, and SNPs. The procedure of this analysis is as follows: (1) automatic segmentation of lung lobes using 3D U-Net, (2) quantitative image analysis of emphysema progression in lung lobes, and (3) visualization and unsupervised clustering of emphysema progression using t-SNE. Nine explanatory variables were used for the clustering: genotypes at two SNPs (rs13180 and rs3923564), smoking history (smoking years, number of cigarettes per day, pack-year), and LAV distribution (LAV size and density in upper lobes, LAV size, and density in lower lobes). The objective variable was emphysema progression which was defined as the annual change in low attenuation volume (LAV%/year) using linear regression. The nine-dimensional space was transformed to two-dimensional space by t-SNE, and divided into three clusters by Gaussian mixture model. This method was applied to 37 smokers with 68.2 pack-years and 97 past smokers with 51.1 pack-years. The results demonstrated that this method could be effective for quantitative assessment of emphysema progression by SNPs, smoking history, and imaging features

    Association analysis of SNPs with CT image-based phenotype of emphysema progression in heavy smokers

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is predicted to become the third leading cause of death worldwide by 2030. Smoking is a well-known risk factor in the development of COPD. Association between COPD genes and smoking have been studied. This paper presents an association analysis of single nucleotide polymorphisms (SNPs) with a CT image-based phenotype of emphysema progression in heavy smokers. The emphysema progression was quantitatively represented by the annual increment of low attenuation volume (LAV) on CT scans for five years. 10 candidate SNPs were selected from 316 SNPs in 125 papers of genetic studies of COPD and lung cancer. The genotypes were determined by real-time polymerase chain reaction (PCR) using deoxyribonucleic acid (DNA) extracted from saliva samples. The association analysis was performed by Fisher's exact test and logistic regression analysis. This method was applied to a dataset with 144 participants (71 smokers, 61 past smokers, and 12 non-smokers). The results showed that the genotypes of rs3923564 and rs13180 SNPs were candidate SNPs associated with the CT image based-emphysema progression

    Automated Assessment of Aortic and Main Pulmonary Arterial Diameters using Model-Based Blood Vessel Segmentation for Predicting Chronic Thromboembolic Pulmonary Hypertension in Low-Dose CT Lung Screening

    Get PDF
    Chronic thromboembolic pulmonary hypertension (CTEPH) is characterized by obstruction of the pulmonary vasculature by residual organized thrombi. A morphological abnormality inside mediastinum of CTEPH patient is enlargement of pulmonary artery. This paper presents an automated assessment of aortic and main pulmonary arterial diameters for predicting CTEPH in low-dose CT lung screening. The distinctive feature of our method is to segment aorta and main pulmonary artery using both of prior probability and vascular direction which were estimated from mediastinal vascular region using principal curvatures of four-dimensional hyper surface. The method was applied to two datasets, 64 low-dose CT scans of lung cancer screening and 19 normal-dose CT scans of CTEPH patients through the training phase with 121 low-dose CT scans. This paper demonstrates effectiveness of our method for predicting CTEPH in low-dose CT screening

    Segmentation of aorta and main pulmonary artery of non-contrast CT images using U-Net for chronic thromboembolic pulmonary hypertension : evaluation of robustness to contacts with blood vessels

    Get PDF
    Enlargement of the pulmonary artery is a morphological abnormality of pulmonary hypertension patients. Diameters of the aorta and main pulmonary artery (MPA) are useful for predicting the presence of pulmonary hypertension. A major problem in the automatic segmentation of the aorta and MPA from non-contrast CT images is the invisible boundary caused by contact with blood vessels. In this study, we applied U-Net to the segmentation of the aorta and MPA from non-contrast CT images for normal and chronic thromboembolic pulmonary hypertension (CTEPH) cases and evaluated the robustness to the contacts between blood vessels. Our approach of the segmentation consists of three steps: (1) detection of trachea branch point, (2) cropping region of interest centered to the trachea branch point, and (3) segmentation of the aorta and MPA using U-Net. The segmentation performances were compared in seven methods: 2D U-Net, 2D U-Net with pre-trained VGG-16 encoder, 2D U-Net with pre-trained VGG-19 encoder, 2D Attention U-Net, 3D U-Net, an ensemble method of them, and our conventional method. The aorta and MPA segmentation methods using these U-Net achieved higher performance than a conventional method. Although the contact boundaries of blood vessels caused lower performance compared with the non-contact boundaries, the mean boundary distances were below about one pixel

    Fertilizer Microencapsulated with Biodegradable Polymer

    Get PDF
    Many fertilizers are soluble in water, therefore their effect does not last for long time after fertilizing in soils. The nitrogenous fertilizers such as urea transported to groundwater cause serious agricultural contamination and health problems. To solve these problems, sustained release of fertilizer has attracted much attention. In this study, we attempted to prepare polylactide microcapsules with fertilizer by phase separation technique, which was a method of microencapsulation. Polylactide (PLA) was used as a biodegradable polymer bacause the biodegradable polymer has no influence on the soil and the ecosystem. The effect of preparation conditions such as stirring time and fertilizer concentration on morphology of microcapsule and on cumulative percentage released of enclosed urea was also investigated

    Automated detection method of thoracic aorta calcification from non-contrast CT images using mediastinal anatomical label map

    Get PDF
    Progression of thoracic aortic calcification (TAC) has been shown to be associated with hard cardiovascular events including stroke and all-cause mortality as well as coronary events. In this study, we propose an automated detection method of TACs of non-contrast CT images using mediastinal anatomical label map. This method consists of two steps: (1) the construction of a mediastinal anatomical label map, and (2) the detection of TACs using the intensity and the mediastinal anatomical label map. The proposed method was applied to two non-contrast CT image datasets: 24 cases of chronic thromboembolic pulmonary hypertension (CTEPH) and 100 non-CTEPH cases of low-dose CT screening. The method was compared with two-dimensional U-Nets and the Swin UNETR. The results showed that the method achieved significantly higher F1 score of 0.937 than other methods for the non-CTEPH case dataset (p-value < 0.05, pairwise Wilcoxon signed rank test with Bonferroni correction)
    corecore