759 research outputs found
Chiral Lagrangian with higher resonances and flavour breaking
A chiral Lagrangian with breaking and higher resonances is
proposed. In this model, the breaking structure in
vector-pseudoscalar sector is realized with the decay constants of pseudoscalar
mesons and the masses of vector mesons used as inputs. We examine whether the
resulting breaking effect in the charge radii of pseudoscalar mesons
is consistent with the experimental facts.Comment: 29 pages, REVTEX(ver.3), DPNU-93-3
New Physics and CP Angles Measurement at B Factory
We have analyzed how much the angles to be measured at B factories can
deviate from the geometrical ones defined in unitarity triangle under the
existence of new physics. The measurements are given in rephasing invariant
form. If KM matrix is not a and unitary matrix, and
is affected, and the value of depends on the
decay mode. The deviation is constrained to be less than the experimental
precision attained in the next decade by the available data of the magnitude of
KM matrix elements. Deviation of the sum of three angles from cannot be
detected unless new physics contributes significantly to decay or meson
system.Comment: 11 pages, 1 figure in eps format, LaTeX, epsfig.st
Semileptonic decays in the light-cone QCD sum rules
Semileptonic () decays are investigated systematically in the
light-cone QCD sum rules. Special emphasis is put on the LCSR calculation on
weak form factors with an adequate chiral current correlator, which turns out
to be particularly effective to control the pollution by higher twist
components of spectator mesons. The result for each channel depends on the
distribution amplitude of the the producing meson. The leading twist
distribution amplitudes of the related heavy mesons and charmonium are worked
out by a model approach in the reasonable way. A practical scenario is
suggested to understand the behavior of weak form factors in the whole
kinematically accessible ranges. The decay widths and branching ratios are
estimated for several () decay modes of current interest.Comment: 8 pages, talk given by the first arthur at 4th International
Conference on Flavor Physics (ICFP 2007), Beijing, China, Sept 24-28, 200
Study of color suppressed modes
The color suppressed modes are
analyzed in perturbative QCD approach. We find that the dominant contribution
is from the non-factorizable diagrams. The branching ratios calculated in our
approach for agree with current experiments. By
neglecting the gluonic contribution, we predict the branching ratios of are at the comparable size of , but smaller than that of .Comment: revtex, 5 pages, axodraw.st
Nonfactorizable contributions to decays
While the factorization assumption works well for many two-body nonleptonic
meson decay modes, the recent measurement of with
, and shows large deviation from this assumption. We
analyze the decays in the perturbative QCD approach based on
factorization theorem, in which both factorizable and nonfactorizable
contributions can be calculated in the same framework. Our predictions for the
Bauer-Stech-Wirbel parameters, and and and , are
consistent with the observed and branching ratios,
respectively. It is found that the large magnitude and the large
relative phase between and come from color-suppressed
nonfactorizable amplitudes. Our predictions for the , branching ratios can be confronted with
future experimental data.Comment: 25 pages with Latex, axodraw.sty, 6 figures and 5 tables, Version
published in PRD, Added new section 5 and reference
Moderate Supersymmetric CP Violation
It is well known that supersymmetry (SUSY) gives neutron and electron
electric dipole moments ( and ) which are too large by about
. If we assume a SUSY model cannot contain fine-tunings or large mass
scales, then one must require that the SUSY breaking mechanism give real soft
breaking parameters, in which case the minimal SUSY model has no violation
other than from the CKM matrix (besides possible strong violating
effects). We show that in non-minimal SUSY models, a moderate amount of
violation can be induced through one loop corrections to the scalar potential,
giving an effective phase of order , and thus implying and
can be near their current experimental bounds . This moderate amount
of SUSY violation could also prove important for models of electroweak
baryogenesis. We illustrate our results with a specific model.Comment: 19pp plain LATEX, 1 fig (by EMAIL request), TRI-PP-93-86. (Some
clarifying comments about renormalizability added--version to appear in Phys.
Rev. D
Factorization and Endpoint Singularities in Heavy-to-Light decays
We prove a factorization theorem for heavy-to-light form factors. Our result
differs in several important ways from previous proposals. A proper separation
of scales gives hard kernels that are free of endpoint singularities. A general
procedure is described for including soft effects usually associated with the
tail of wavefunctions in hard exclusive processes. We give an operator
formulation of these soft effects using the soft-collinear effective theory,
and show that they appear at the same order in the power counting as the hard
spectator contribution.Comment: 5 pages, Added details on comparison with the literatur
- …