71 research outputs found

    Dexmedetomidine hydrochloride as a long-term sedative

    Get PDF
    Dexmedetomidine undoubtedly is a useful sedative in the intensive care setting because it has a minimal effect on the respiratory system. Dexmedetomidine infusions lasting more than 24 hours have not been approved since the first approval was acquired in the US in 1999. However, in 2008, dexmedetomidine infusions for prolonged use were approved in Colombia and in the Dominican Republic, and the number of countries that have granted approval for prolonged use has been increasing every year. This review discusses the literature examining prolonged use of dexmedetomidine and confirms the efficacy and safety of dexmedetomidine when it is used for more than 24 hours. Dexmedetomidine was administered at varying doses (0.1–2.5 μg/kg/hour) and durations up to 30 days. Dexmedetomidine seems to be an alternative to benzodiazepines or propofol for achieving sedation in adults because the incidences of delirium and coma associated with dexmedetomidine are lower than the corresponding incidences associated with benzodiazepines and propofol, although dexmedetomidine administration can cause mild adverse effects such as bradycardia. Controlled comparative studies on the efficacy and safety of dexmedetomidine and other sedatives in pediatric patients have not been reported. However, dexmedetomidine seems to be effective in managing extubation, reducing the use of conventional sedatives, and as an alternative for inducing sedation in patients for whom traditional sedatives induce inadequate sedation. Prolonged dexmedetomidine infusion has not been reported to have any serious adverse effects. Dexmedetomidine appears to be an alternative long-term sedative, but further studies are needed to establish its efficacy and safety

    Prediction of Optimal Reversal Dose of Sugammadex after Rocuronium Administration in Adult Surgical Patients

    Get PDF
    The objective of this study was to determine the point after sugammadex administration at which sufficient or insufficient dose could be determined, using first twitch height of train-of-four (T1 height) or train-of-four ratio (TOFR) as indicators. Groups A and B received 1 mg/kg and 0.5 mg/kg of sugammadex, respectively, as a first dose when the second twitch reappeared in train-of-four stimulation, and Groups C and D received 1 mg/kg and 0.5 mg/kg of sugammadex, respectively, as the first dose at posttetanic counts 1–3. Five minutes after the first dose, an additional 1 mg/kg of sugammadex was administered and changes in T1 height and TOFR were observed. Patients were divided into a recovered group and a partly recovered group, based on percentage changes in T1 height after additional dosing. T1 height and TOFR during the 5 min after first dose were then compared. In the recovered group, TOFR exceeded 90% in all patients at 3 min after sugammadex administration. In the partly recovered group, none of the patients had a TOFR above 90% at 3 min after sugammadex administration. An additional dose of sugammadex can be considered unnecessary if the train-of-four ratio is ≥90% at 3 min after sugammadex administration. This trial is registered with UMIN000007245

    Pharmacokinetics and Pharmacodynamics of Dexmedetomidine

    No full text

    Anesthetic Management with Dexmedetomidine for Intraoperative Awake Test in Correction of Scoliosis

    No full text

    Indication for and Selection of Intraoperative Monitors

    No full text
    corecore