3 research outputs found

    SOLUBILITY AND DISSOLUTION RATE ENHANCEMENT OF EZETIMIBE BY SOLID DISPERSION AND PELLETIZATION TECHNIQUES USING SOLUPLUS AS CARRIER

    Get PDF
    Objective: In the present investigation, an attempt was made to improve the surface characters and solubility of the drug by solid dispersion and coating it on the nonpareil sugar beads as pellets. Methods: Ezetimibe solid dispersions were prepared by kneading method using soluplus. Crospovidone was added as a disintegrant in pellets. Ezetimibe pellets were prepared by dissolving soluplus and crospovidone in ethanol in different ratios and coated on nonpareil sugar beads as a drug layer by pan coating technique. Various physicochemical parameters like particle size, friability, angle of repose and drug content were evaluated for the prepared solid dispersions and pellet formulations. In vitro dissolution studies were carried out in 1% SLS using USP apparatus II. FTIR and SEM analysis were performed for solid dispersions, pellet formulations and its polymers to determine the interactions and surface characteristics. Results: The physicochemical parameters were within the specified I. P limits. It was observed that the solid dispersion formulation ED5 showed better dissolution rate to the extent of 1.07 folds and 1.95 folds when compared to a marketed formulation and the pure drug, respectively. Similarly, pellet formulation EP5 containing 1:5 ratio of ezetimibe to soluplus showed an improved dissolution rate to the extent of 1.173 folds and 2.136 folds when compared to the marketed formulation and the pure drug, respectively. FTIR analysis revealed that there was no major interaction between the drug and the excipients.  Conclusion: From the present study, it was observed that the solubility of ezetimibe was enhanced by soluplus in pellet formulations when compared to solid dispersions

    SOLUBILITY AND DISSOLUTION RATE ENHANCEMENT OF EZETIMIBE BY SOLID DISPERSION AND PELLETIZATION TECHNIQUES

    Get PDF
    Objective: In the present investigation, an attempt was made to improve the surface characters and solubility of the drug by solid dispersion and coating it on the non-pareil sugar beads as pellets. Methods: Ezetimibe solid dispersions were prepared by solvent evaporation technique using Kollidon VA64 as binder and solubility enhancer. Crospovidone as disintegrant and ethanol was used as solvent. Ezetimibe pellets were prepared by dissolving ezetimibe, kollidonVA64, and crospovidone in ethanol in different ratios and coated on non-pareil sugar beads as a drug layer by pan coating technique. Results: All the formulations were further evaluated for physicochemical parameters such as particle size, friability, angle of repose, and drug content. In vitro dissolution studies were carried out in 1% sodium lauryl sulfate using USP apparatus II. Conclusion: It was observed that the dissolution rate of the solid dispersion formulation ESD5 showed better dissolution rate to the extent of 1.05 folds and 1.824 folds when compared to a marketed formulation and pure drug, respectively. Similarly, formulation EPL5 containing 1:5 ratio of ezetimibe to Kollidon VA64 showed improved dissolution rate to the extent of 1.091 folds and 1.986 folds when compared to the marketed formulation and pure drug, respectively. Majority of the formulations displayed first-order release kinetics and were found to be linear with R2 values in the range of 0.874–0.993. Fourier transform infrared analysis revealed that there was no major interaction between the drug and excipients used in the design of formulation. Scanning electron microscopy analysis was performed for solid dispersions, pellet formulations, and its polymers to determine the surface characteristics

    SOLUBILITY AND DISSOLUTION RATE ENHANCEMENT OF TELMISARTAN BY SOLID DISPERSION AND PELLETIZATION TECHNIQUES USING SOLUPLUS AS CARRIER

    Get PDF
    Objective: In the present investigation, an attempt was made to improve the surface characters and solubility of the drug by solid dispersion and coating it on the nonpareil sugar beads as pellets. Methods: Telmisartan solid dispersions were prepared by kneading method using soluplus. Crospovidone was added as disintegrant in pellets. Telmisartan pellets were prepared by dissolving soluplus and crospovidone in ethanol in different ratios and coated on nonpareil sugar beads as a drug layer by pan coating technique. Various physicochemical parameters like particle size, friability, angle of repose and drug content were evaluated for the prepared solid dispersions and pellet formulations. In vitro dissolution studies were carried out in pH 7.5 phosphate buffer using USP apparatus II. Fourier Transform Infrared Spectrometry, Differential Scanning Calorimetry and Scanning Electron Microscopic analysis were performed for solid dispersions, pellet formulations and its polymers to determine the interactions and surface characteristics. Results: The physicochemical parameters were within the specified I. P limits. It was observed that the solid dispersion formulation TS5 containing 1:5 ratio of telmisartan to soluplus showed better dissolution rate to the extent of 1.143 folds and 2.033 folds when compared to a marketed formulation and the pure drug, respectively. Similarly, pellet formulation TP3 containing 1:3 ratio of telmisartan to soluplus showed an improved dissolution rate to the extent of 1.221 folds and 2.170 folds when compared to the marketed formulation and the pure drug, respectively. FTIR and DSC analysis revealed that there was no major interaction between the drug and the excipients.  Conclusion: From the present study, it was observed that the solubility of telmisartan was enhanced by soluplus in pellet formulations when compared to solid dispersions
    corecore