137 research outputs found

    Autophagy as a Therapeutic Target in Diabetic Nephropathy

    Get PDF
    Diabetic nephropathy is a serious complication of diabetes mellitus, and its prevalence has been increasing worldwide. Therefore, there is an urgent need to identify a new therapeutic target to prevent diabetic nephropathy. Autophagy is a major catabolic pathway involved in degrading and recycling macromolecules and damaged organelles to maintain intracellular homeostasis. The study of autophagy in mammalian systems is advancing rapidly and has revealed that it is involved in the pathogenesis of various metabolic or age-related diseases. The functional role of autophagy in the kidneys is also currently under intense investigation although, until recently, evidence showing the involvement of autophagy in the pathogenesis of diabetic nephropathy has been limited. We provide a systematic review of autophagy and discuss the therapeutic potential of autophagy in diabetic nephropathy to help future investigations in this field

    General anesthesia of a Japanese infant with Barber-Say syndrome : a case report

    Get PDF
    Background: Barber-Say syndrome (BSS) is a very rare congenital disorder characterized by macrostomia, cutis laxa, and other features. We report our experience of performing general anesthesia on a Japanese child with BSS. Case presentation: A bilateral repair of the corners of the mouth under general anesthesia was planned for an 18-month-old male with macrostomia; the child was 75 cm in height and weighed 9.9 kg. As insertion of the peripheral intravenous catheter was difficult, it was inserted before the surgery by a pediatrician. The patient wore a mask and was ventilated manually after loss of consciousness with intravenous anesthesia. A mask for adults provided a superior fit and was effective in preventing air leakage from the corners of the mouth. After rocuronium was administered, the larynx was spread with a Macintosh laryngoscope. There was no laryngeal anatomical abnormality, and tracheal intubation was readily possible. The operation was completed without incident. Stiffening of both arms occurred for several seconds one hour after the operation ended, but the patient did not develop other complications. Conclusions: Mask ventilation and the insertion of an intravenous catheter may be difficult in the general anesthesia of patients with BSS, and anesthetic management requires caution

    Effects of Fluoranthene, a Polycyclic Aromatic Hydrocarbon, on cAMP-Dependent Anion Secretion in Human Airway Epithelia

    Get PDF
    ABSTRACT The human respiratory tract is constantly exposed to polycyclic aromatic hydrocarbons (PAHs) through inhalation of atmospheric pollutants. We examined the effects of three PAHs (benzo[a]pyrene, anthracene, and fluoranthene) on the airway ion transport, which is essential for lung defense and normal airway function, using human airway epithelia (Calu-3). These three PAHs had no significant effect on the basal short-circuit current (I sc ). However, fluoranthene (1-100 M) applied in the apical compartment potentiated I sc in response to cAMP-related agents (isoproterenol, forskolin, and 8-bromo-cAMP). The effects of fluoranthene were unaffected by ellipticine, a PAH receptor antagonist. Estimation of the anionic composition of I sc revealed that isoproterenol increased both HCO 3 Ϫ and Cl

    Impaired Anaphylactic Responses with Intact Sensitivity to Endotoxin in Mice Lacking a Platelet-activating Factor Receptor

    Get PDF
    Platelet-activating factor (PAF) is a potent phospholipid mediator with diverse biological activities in addition to its well-known ability to stimulate platelet aggregation. Pharmacologic studies had suggested a role for PAF in pregnancy, neuronal cell migration, anaphylaxis, and endotoxic shock. Here we show that disruption of the PAF receptor gene in mice caused a marked reduction in systemic anaphylactic symptoms. Unexpectedly, however, the PAF receptor–deficient mice developed normally, were fertile, and remained sensitive to bacterial endotoxin. These mutant mice clearly show that PAF plays a dominant role in eliciting anaphylaxis, but that it is not essential for reproduction, brain development, or endotoxic shock

    Roles of mTOR in Diabetic Kidney Disease.

    Get PDF
    Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease and the number of patients affected is increasing worldwide. Thus, there is a need to establish a new treatment for DKD to improve the renal prognosis of diabetic patients. Recently, it has shown that intracellular metabolic abnormalities are involved in the pathogenesis of DKD. In particular, the activity of mechanistic target of rapamycin complex 1 (mTORC1), a nutrient-sensing signaling molecule, is hyperactivated in various organs of diabetic patients, which suggests the involvement of excessive mTORC1 activation in the pathogenesis of diabetes. In DKD, hyperactivated mTORC1 may be involved in the pathogenesis of podocyte damage, which causes proteinuria, and tubular cell injury that decreases renal function. Therefore, elucidating the role of mTORC1 in DKD and developing new therapeutic agents that suppress mTORC1 hyperactivity may shed new light on DKD treatments in the future

    GW501516, a PPARδ Agonist, Ameliorates Tubulointerstitial Inflammation in Proteinuric Kidney Disease via Inhibition of TAK1-NFκB Pathway in Mice

    Get PDF
    Peroxisome proliferator-activated receptors (PPARs) are a nuclear receptor family of ligand-inducible transcription factors, which have three different isoforms: PPARα, δ and γ. It has been demonstrated that PPARα and γ agonists have renoprotective effects in proteinuric kidney diseases; however, the role of PPARδ agonists in kidney diseases remains unclear. Thus, we examined the renoprotective effect of GW501516, a PPARδ agonist, in a protein-overload mouse nephropathy model and identified its molecular mechanism. Mice fed with a control diet or GW501516-containing diet were intraperitoneally injected with free fatty acid (FFA)-bound albumin or PBS(−). In the control group, protein overload caused tubular damages, macrophage infiltration and increased mRNA expression of MCP-1 and TNFα. These effects were prevented by GW501516 treatment. In proteinuric kidney diseases, excess exposure of proximal tubular cells to albumin, FFA bound to albumin or cytokines such as TNFα is detrimental. In vitro studies using cultured proximal tubular cells showed that GW501516 attenuated both TNFα- and FFA (palmitate)-induced, but not albumin-induced, MCP-1 expression via direct inhibition of the TGF-β activated kinase 1 (TAK1)-NFκB pathway, a common downstream signaling pathway to TNFα receptor and toll-like receptor-4. In conclusion, we demonstrate that GW501516 has an anti-inflammatory effect in renal tubular cells and may serve as a therapeutic candidate to attenuate tubulointerstitial lesions in proteinuric kidney diseases

    Optineurin regulates osteoblastogenesis through STAT1

    Get PDF
    A sophisticated and delicate balance between bone resorption by osteoclasts and bone formation by osteoblasts regulates bone metabolism. Optineurin (OPTN) is a gene involved in primary open-angle glaucoma and amyotrophic lateral sclerosis. Although its function has been widely studied in ophthalmology and neurology, recent reports have shown its possible involvement in bone metabolism through negative regulation of osteoclast differentiation. However, little is known about the role of OPTN in osteoblast function. Here, we demonstrated that OPTN controls not only osteoclast but also osteoblast differentiation. Different parameters involved in osteoblastogenesis and osteoclastogenesis were assessed in Optn−/- mice. The results showed that osteoblasts from Optn−/- mice had impaired alkaline phosphatase activity, defective mineralized nodules, and inability to support osteoclast differentiation. Moreover, OPTN could bind to signal transducer and activator of transcription 1 (STAT1) and regulate runt-related transcription factor 2 (RUNX2) nuclear localization by modulating STAT1 levels in osteoblasts. These data suggest that OPTN is involved in bone metabolism not only by regulating osteoclast function but also by regulating osteoblast function by mediating RUNX2 nuclear translocation via STAT1
    corecore