1,594 research outputs found
Some FRW Models of Accelerating Universe with Dark Energy
The paper deals with a spatially homogeneous and isotropic FRW space-time
filled with perfect fluid and dark energy components. The two sources are
assumed to interact minimally, and therefore their energy momentum tensors are
conserved separately. A special law of variation for the Hubble parameter
proposed by Berman (1983) has been utilized to solve the field equations. The
Berman's law yields two explicit forms of the scale factor governing the FRW
space-time and constant values of deceleration parameter. The role of dark
energy with variable equation of state parameter has been studied in detail in
the evolution of FRW universe. It has been found that dark energy dominates the
universe at the present epoch, which is consistent with the observations. The
physical behavior of the universe is discussed in detail.Comment: 10 pages, 5 figure
Transport across nanogaps using semiclassically consistent boundary conditions
Charge particle transport across nanogaps is studied theoretically within the
Schrodinger-Poisson mean field framework and the existence of limiting current
investigated. It is shown that the choice of a first order WKB wavefunction as
the transmitted wave leads to self consistent boundary conditions and gives
results that are significantly different in the non-classical regime from those
obtained using a plane transmitted wave. At zero injection energies, the
quantum limiting current density, J_c, is found to obey the local scaling law
J_c ~ (V_g)^alpha/(D)^{5-2alpha} with the gap separation D and voltage V_g. The
exponent alpha > 1.1 with alpha --> 3/2 in the classical regime of small de
Broglie wavelengths. These results are consistent with recent experiments using
nanogaps most of which are found to be in a parameter regime where classical
space charge limited scaling holds away from the emission dominated regime.Comment: 4 pages, 4 ps figure
Cosmological models with linearly varying deceleration parameter
We propose a new law for the deceleration parameter that varies linearly with
time and covers Berman's law where it is constant. Our law not only allows one
to generalize many exact solutions that were obtained assuming constant
deceleration parameter, but also gives a better fit with data (from SNIa, BAO
and CMB), particularly concerning the late time behavior of the universe.
According to our law only the spatially closed and flat universes are allowed;
in both cases the cosmological fluid we obtain exhibits quintom like behavior
and the universe ends with a big-rip. This is a result consistent with recent
cosmological observations.Comment: 12 pages, 7 figures; some typo corrections; to appear in
International Journal of Theoretical Physic
Collaborative dynamic decision making: a case study from B2B supplier selection
The problem of supplier selection can be easily modeled as a multiple-criteria decision making (MCDM) problem: businesses express their preferences with respect to suppliers, which can then be ranked and selected. This approach has two major pitfalls: first, it does not consider a dynamic scenario, in which suppliers and their ratings are constantly changing; second, it only addressed the problem from the point of view of a single business, and cannot be easily applied when considering more than one business. To overcome these problems, we introduce a method for supplier selection that builds upon the dynamic MCDM framework of Campanella and Ribeiro [1] and, by means of a linear programming model, can be used in the case of multiple collaborating businesses plan- ning their next batch of orders together.Fundação para a Ciência e a Tecnologia, Portugal, under contract CONT DOUT/49/UNINOVA/0/5902/1/200
Cloud microphysical effects of turbulent mixing and entrainment
Turbulent mixing and entrainment at the boundary of a cloud is studied by
means of direct numerical simulations that couple the Eulerian description of
the turbulent velocity and water vapor fields with a Lagrangian ensemble of
cloud water droplets that can grow and shrink by condensation and evaporation,
respectively. The focus is on detailed analysis of the relaxation process of
the droplet ensemble during the entrainment of subsaturated air, in particular
the dependence on turbulence time scales, droplet number density, initial
droplet radius and particle inertia. We find that the droplet evolution during
the entrainment process is captured best by a phase relaxation time that is
based on the droplet number density with respect to the entire simulation
domain and the initial droplet radius. Even under conditions favoring
homogeneous mixing, the probability density function of supersaturation at
droplet locations exhibits initially strong negative skewness, consistent with
droplets near the cloud boundary being suddenly mixed into clear air, but
rapidly approaches a narrower, symmetric shape. The droplet size distribution,
which is initialized as perfectly monodisperse, broadens and also becomes
somewhat negatively skewed. Particle inertia and gravitational settling lead to
a more rapid initial evaporation, but ultimately only to slight depletion of
both tails of the droplet size distribution. The Reynolds number dependence of
the mixing process remained weak over the parameter range studied, most
probably due to the fact that the inhomogeneous mixing regime could not be
fully accessed when phase relaxation times based on global number density are
considered.Comment: 17 pages, 10 Postscript figures (figures 3,4,6,7,8 and 10 are in
reduced quality), to appear in Theoretical Computational Fluid Dynamic
A Note on D-brane - Anti-D-brane Interactions in Plane Wave Backgrounds
We study aspects of the interaction between a D-brane and an anti-D-brane in
the maximally supersymmetric plane wave background of type IIB superstring
theory, which is equipped with a mass parameter mu. An early such study in flat
spacetime (mu=0) served to sharpen intuition about D-brane interactions,
showing in particular the key role of the ``stringy halo'' that surrounds a
D-brane. The halo marks the edge of the region within which tachyon
condensation occurs, opening a gateway to new non-trivial vacua of the theory.
It seems pertinent to study the fate of the halo for non--zero mu. We focus on
the simplest cases of a Lorentzian brane with p=1 and an Euclidean brane with
p=-1, the D--instanton. For the Lorentzian brane, we observe that the halo is
unaffected by the presence of non--zero mu. This most likely extends to other
(Lorentzian) p. For the Euclidean brane, we find that the halo is affected by
non-zero mu. As this is related to subtleties in defining the exchange
amplitude between Euclidean branes in the open string sector, we expect this to
extend to all Euclidean branes in this background.Comment: 14 pages, LaTeX, 2 eps figures. v2: a reference and some clarifying
remarks added; v3: Considerably revised version; halo unaffected by plane
wave background for Lorentzian branes, but Euclidean branes' halo is modifie
Comments on D-brane Interactions in PP-wave Backgrounds
We calculate the interaction potential between widely separated D-branes in
PP-wave backgrounds in string theory as well as in low-energy supergravity.
Timelike and spacelike orientations are qualitatively different but in both
cases the effective brane tensions and RR charges take the same values as in
Minkowski space in accordance with the expectations from the sigma model
perturbation theory.Comment: Latex, 22 pages. Typos corrected and a reference added, final versio
Intersecting D-branes in Type IIB Plane Wave Background
We study intersecting D-branes in a type IIB plane wave background using
Green-Schwarz worldsheet formulation. We consider all possible -branes
intersecting at angles in the plane wave background and identify their residual
supersymmetries. We find, in particular, that brane
intersections preserve no supersymmetry. We also present the explicit
worldsheet expressions of conserved supercharges and their supersymmetry
algebras.Comment: 32 pages, 2 tables; Corrected typos, to appear in Phys. Rev.
Dissipative Future Universe without Big Rip
The present study deals with dissipative future universe without big rip in
context of Eckart formalism. The generalized chaplygin gas, characterized by
equation of state , has been considered as
a model for dark energy due to its dark-energy-like evolution at late time. It
is demonstrated that, if the cosmic dark energy behaves like a fluid with
equation of state ; , as well as chaplygin gas
simultaneously then the big rip problem does not arises and the scale factor is
found to be regular for all time.Comment: 6 pages, 2 figures, To appear in Int. J. Theor. Phy
Giant Gravitons in type IIA PP-wave Background
We examine giant gravitons with a worldvolume magnetic flux in type IIA
pp-wave background and find that they can move away from the origin along
direction in target space satisfying . This nontrivial relation can be
regarded as a complementary relation of the giant graviton on IIA pp-wave and
is shown to be connected to the spacetime uncertainty principle. The giant
graviton is also investigated in a system of N D0-branes as a fuzzy sphere
solution. It is observed that enters into the fuzzy algebra as a
deformation parameter. Such a background dependent Myers effect guarantees that
we again get the crucial relation of our giant graviton. In the paper, we also
find a BIon configuration on the giant graviton in this background.Comment: 10 pages, no figure, content added, typo corrected, reference adde
- …
