1,594 research outputs found

    Some FRW Models of Accelerating Universe with Dark Energy

    Full text link
    The paper deals with a spatially homogeneous and isotropic FRW space-time filled with perfect fluid and dark energy components. The two sources are assumed to interact minimally, and therefore their energy momentum tensors are conserved separately. A special law of variation for the Hubble parameter proposed by Berman (1983) has been utilized to solve the field equations. The Berman's law yields two explicit forms of the scale factor governing the FRW space-time and constant values of deceleration parameter. The role of dark energy with variable equation of state parameter has been studied in detail in the evolution of FRW universe. It has been found that dark energy dominates the universe at the present epoch, which is consistent with the observations. The physical behavior of the universe is discussed in detail.Comment: 10 pages, 5 figure

    Transport across nanogaps using semiclassically consistent boundary conditions

    Full text link
    Charge particle transport across nanogaps is studied theoretically within the Schrodinger-Poisson mean field framework and the existence of limiting current investigated. It is shown that the choice of a first order WKB wavefunction as the transmitted wave leads to self consistent boundary conditions and gives results that are significantly different in the non-classical regime from those obtained using a plane transmitted wave. At zero injection energies, the quantum limiting current density, J_c, is found to obey the local scaling law J_c ~ (V_g)^alpha/(D)^{5-2alpha} with the gap separation D and voltage V_g. The exponent alpha > 1.1 with alpha --> 3/2 in the classical regime of small de Broglie wavelengths. These results are consistent with recent experiments using nanogaps most of which are found to be in a parameter regime where classical space charge limited scaling holds away from the emission dominated regime.Comment: 4 pages, 4 ps figure

    Cosmological models with linearly varying deceleration parameter

    Full text link
    We propose a new law for the deceleration parameter that varies linearly with time and covers Berman's law where it is constant. Our law not only allows one to generalize many exact solutions that were obtained assuming constant deceleration parameter, but also gives a better fit with data (from SNIa, BAO and CMB), particularly concerning the late time behavior of the universe. According to our law only the spatially closed and flat universes are allowed; in both cases the cosmological fluid we obtain exhibits quintom like behavior and the universe ends with a big-rip. This is a result consistent with recent cosmological observations.Comment: 12 pages, 7 figures; some typo corrections; to appear in International Journal of Theoretical Physic

    Collaborative dynamic decision making: a case study from B2B supplier selection

    Get PDF
    The problem of supplier selection can be easily modeled as a multiple-criteria decision making (MCDM) problem: businesses express their preferences with respect to suppliers, which can then be ranked and selected. This approach has two major pitfalls: first, it does not consider a dynamic scenario, in which suppliers and their ratings are constantly changing; second, it only addressed the problem from the point of view of a single business, and cannot be easily applied when considering more than one business. To overcome these problems, we introduce a method for supplier selection that builds upon the dynamic MCDM framework of Campanella and Ribeiro [1] and, by means of a linear programming model, can be used in the case of multiple collaborating businesses plan- ning their next batch of orders together.Fundação para a Ciência e a Tecnologia, Portugal, under contract CONT DOUT/49/UNINOVA/0/5902/1/200

    Cloud microphysical effects of turbulent mixing and entrainment

    Full text link
    Turbulent mixing and entrainment at the boundary of a cloud is studied by means of direct numerical simulations that couple the Eulerian description of the turbulent velocity and water vapor fields with a Lagrangian ensemble of cloud water droplets that can grow and shrink by condensation and evaporation, respectively. The focus is on detailed analysis of the relaxation process of the droplet ensemble during the entrainment of subsaturated air, in particular the dependence on turbulence time scales, droplet number density, initial droplet radius and particle inertia. We find that the droplet evolution during the entrainment process is captured best by a phase relaxation time that is based on the droplet number density with respect to the entire simulation domain and the initial droplet radius. Even under conditions favoring homogeneous mixing, the probability density function of supersaturation at droplet locations exhibits initially strong negative skewness, consistent with droplets near the cloud boundary being suddenly mixed into clear air, but rapidly approaches a narrower, symmetric shape. The droplet size distribution, which is initialized as perfectly monodisperse, broadens and also becomes somewhat negatively skewed. Particle inertia and gravitational settling lead to a more rapid initial evaporation, but ultimately only to slight depletion of both tails of the droplet size distribution. The Reynolds number dependence of the mixing process remained weak over the parameter range studied, most probably due to the fact that the inhomogeneous mixing regime could not be fully accessed when phase relaxation times based on global number density are considered.Comment: 17 pages, 10 Postscript figures (figures 3,4,6,7,8 and 10 are in reduced quality), to appear in Theoretical Computational Fluid Dynamic

    A Note on D-brane - Anti-D-brane Interactions in Plane Wave Backgrounds

    Full text link
    We study aspects of the interaction between a D-brane and an anti-D-brane in the maximally supersymmetric plane wave background of type IIB superstring theory, which is equipped with a mass parameter mu. An early such study in flat spacetime (mu=0) served to sharpen intuition about D-brane interactions, showing in particular the key role of the ``stringy halo'' that surrounds a D-brane. The halo marks the edge of the region within which tachyon condensation occurs, opening a gateway to new non-trivial vacua of the theory. It seems pertinent to study the fate of the halo for non--zero mu. We focus on the simplest cases of a Lorentzian brane with p=1 and an Euclidean brane with p=-1, the D--instanton. For the Lorentzian brane, we observe that the halo is unaffected by the presence of non--zero mu. This most likely extends to other (Lorentzian) p. For the Euclidean brane, we find that the halo is affected by non-zero mu. As this is related to subtleties in defining the exchange amplitude between Euclidean branes in the open string sector, we expect this to extend to all Euclidean branes in this background.Comment: 14 pages, LaTeX, 2 eps figures. v2: a reference and some clarifying remarks added; v3: Considerably revised version; halo unaffected by plane wave background for Lorentzian branes, but Euclidean branes' halo is modifie

    Comments on D-brane Interactions in PP-wave Backgrounds

    Get PDF
    We calculate the interaction potential between widely separated D-branes in PP-wave backgrounds in string theory as well as in low-energy supergravity. Timelike and spacelike orientations are qualitatively different but in both cases the effective brane tensions and RR charges take the same values as in Minkowski space in accordance with the expectations from the sigma model perturbation theory.Comment: Latex, 22 pages. Typos corrected and a reference added, final versio

    Intersecting D-branes in Type IIB Plane Wave Background

    Full text link
    We study intersecting D-branes in a type IIB plane wave background using Green-Schwarz worldsheet formulation. We consider all possible D±D_\pm-branes intersecting at angles in the plane wave background and identify their residual supersymmetries. We find, in particular, that DD±D_\mp - D_\pm brane intersections preserve no supersymmetry. We also present the explicit worldsheet expressions of conserved supercharges and their supersymmetry algebras.Comment: 32 pages, 2 tables; Corrected typos, to appear in Phys. Rev.

    Dissipative Future Universe without Big Rip

    Full text link
    The present study deals with dissipative future universe without big rip in context of Eckart formalism. The generalized chaplygin gas, characterized by equation of state p=Aρ1αp=-\frac{A}{\rho^\frac{1}{\alpha}}, has been considered as a model for dark energy due to its dark-energy-like evolution at late time. It is demonstrated that, if the cosmic dark energy behaves like a fluid with equation of state p=ωρp=\omega\rho; ω<1\omega < -1, as well as chaplygin gas simultaneously then the big rip problem does not arises and the scale factor is found to be regular for all time.Comment: 6 pages, 2 figures, To appear in Int. J. Theor. Phy

    Giant Gravitons in type IIA PP-wave Background

    Full text link
    We examine giant gravitons with a worldvolume magnetic flux qq in type IIA pp-wave background and find that they can move away from the origin along x4x^4 direction in target space satisfying Rx4=qRx^4=-q. This nontrivial relation can be regarded as a complementary relation of the giant graviton on IIA pp-wave and is shown to be connected to the spacetime uncertainty principle. The giant graviton is also investigated in a system of N D0-branes as a fuzzy sphere solution. It is observed that x4x^4 enters into the fuzzy algebra as a deformation parameter. Such a background dependent Myers effect guarantees that we again get the crucial relation of our giant graviton. In the paper, we also find a BIon configuration on the giant graviton in this background.Comment: 10 pages, no figure, content added, typo corrected, reference adde
    corecore