10 research outputs found

    Are banana weevil borers a vector in spreading Fusarium oxysporum f. sp cubense tropical race 4 in banana plantations?

    No full text
    Fusarium wilt of banana is a destructive plant disease, caused by the soilborne pathogen Fusarium oxysporum f. sp. cubense (Foc). Once established, it spreads rapidly, destroys the banana plants and builds up inoculum in the soil. To improve control and containment strategies, this study examined the pattern and possible methods of Foc tropical race 4 (Foc TR4) spread on a plantation. To date, root-to-root dispersal within the soil has been the presumed means of spread, but the fact that the spread of Foc TR4 occurred beyond neighbouring plants on the four fields assessed inferred that this is not the only mechanism. The banana weevil, Cosmopolites sordidus, is widespread in banana plantations and viable spores were found on the exoskeletons of ten per cent of the weevils, which infers that they may be a vector. Controlling vectors such as C. sordidus in banana plantations may therefore help minimise the spread of Foc TR4

    Identification of QTL for resistance and susceptibility to Stagonospora meliloti in autotetraploid lucerne

    No full text
    In eastern Australia and California, USA, one of the major lethal fungal diseases of lucerne (Medicago sativa) is Stagonospora root and crown rot, caused by Stagonospora meliloti. Quantitative trait loci (QTL) involved in resistance and susceptibility to S. meliloti were identified in an autotetraploid lucerne backcross population of 145 individuals. Using regression analysis and interval mapping, we detected one region each on linkage groups 2, 6 and 7 that were consistently associated with disease reaction to S. meliloti in two separate experiments. The largest QTL on linkage group 7, which is associated with resistance to S. meliloti, contributed up to 17% of the phenotypic variation. The QTL located on linkage group 2, which is potentially a resistance allele in repulsion to the markers for susceptibility to S. meliloti, contributed up to 8% of the phenotypic variation. The QTL located on linkage group 6, which is associated with susceptibility to S. meliloti, contributed up to 16% of the phenotypic variation. A further two unlinked markers contributed 5 and 8% of the phenotypic variation, and were detected in only one experiment. A total of 517 simple sequence repeat (SSR) markers from Medicago truncatula were screened on the parents of the mapping population. Only 27 (6%) SSR markers were polymorphic and could be incorporated into the autotetraploid map of M. sativa. This allowed alignment of our M. sativa linkage map with published M. truncatula maps. The markers linked to the QTL we have reported will be useful for marker assisted selection for partial resistance to S. meliloti in lucerne

    Use of metabolomics for the chemotaxonomy of legume-associated Ascochyta and allied genera

    No full text
    Chemotaxonomy and the comparative analysis of metabolic features of fungi have the potential to provide valuable information relating to ecology and evolution, but have not been fully explored in fungal biology. Here, we investigated the chemical diversity of legume-associated Ascochyta and Phoma species and the possible use of a metabolomics approach using liquid chromatography-mass spectrometry for their classification. The metabolic features of 45 strains including 11 known species isolated from various legumes were extracted, and the datasets were analyzed using chemometrics methods such as principal component and hierarchical clustering analyses. We found a high degree of intra-species consistency in metabolic profiles, but inter-species diversity was high. Molecular phylogenies of the legume-associated Ascochyta/Phoma species were estimated using sequence data from three protein-coding genes and the five major chemical groups that were detected in the hierarchical clustering analysis were mapped to the phylogeny. Clusters based on similarity of metabolic features were largely congruent with the species phylogeny. These results indicated that evolutionarily distinct fungal lineages have diversified their metabolic capacities as they have evolved independently. This whole metabolomics approach may be an effective tool for chemotaxonomy of fungal taxa lacking information on their metabolic content

    Belowground–aboveground interactions between pathogens and herbivores

    No full text
    Plants are attacked by pathogens and herbivores with a wide range of lifestyles, both belowground and aboveground. These pathogens and herbivores often co-occur on the same host plant, even though one of them may be in the roots and the other in the shoots. It has long been known that pathogens and herbivores can affect each other when sharing the same part of the plant, but more recently it has been shown that these interactions can span the belowground–aboveground divide. Root pathogens, for instance, can affect foliar herbivores, and, vice versa, foliar herbivores can affect root pathogens. Likewise, root herbivores can affect foliar pathogens and, vice versa, foliar pathogens can affect root herbivores. Such cross-compartment interactions are indirect (i.e., plant-mediated) and may involve induction and priming of common plant defenses, or altered plant quality. This chapter will review the literature and present a framework for this novel type of aboveground–belowground interactions between pathogens and herbivores
    corecore